Guofan Wu, Xiao Li, Craig A Lehocky, Cameron N Riviere
{"title":"手动插入针的自动转向。","authors":"Guofan Wu, Xiao Li, Craig A Lehocky, Cameron N Riviere","doi":"10.1109/SMC.2013.257","DOIUrl":null,"url":null,"abstract":"<p><p>Bevel-tipped flexible needles can be robotically steered to reach clinical targets along curvilinear paths in 3D. Manual needle insertion allows the clinician to control the insertion speed, ensuring patient safety. This paper presents a control law for automatic 3D steering of manually inserted flexible needles, enabling path-following control. A look-ahead proportional controller for position and orientation is presented. The look-ahead distance is a linear function of insertion speed. Simulations in a 3D brain-like environment demonstrate the performance of the proposed controller. Experimental results also show the feasibility of this technique in 2D and 3D environments.</p>","PeriodicalId":72691,"journal":{"name":"Conference proceedings. IEEE International Conference on Systems, Man, and Cybernetics","volume":" ","pages":"1488-1493"},"PeriodicalIF":0.0000,"publicationDate":"2013-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/SMC.2013.257","citationCount":"3","resultStr":"{\"title\":\"Automatic Steering of Manually Inserted Needles.\",\"authors\":\"Guofan Wu, Xiao Li, Craig A Lehocky, Cameron N Riviere\",\"doi\":\"10.1109/SMC.2013.257\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Bevel-tipped flexible needles can be robotically steered to reach clinical targets along curvilinear paths in 3D. Manual needle insertion allows the clinician to control the insertion speed, ensuring patient safety. This paper presents a control law for automatic 3D steering of manually inserted flexible needles, enabling path-following control. A look-ahead proportional controller for position and orientation is presented. The look-ahead distance is a linear function of insertion speed. Simulations in a 3D brain-like environment demonstrate the performance of the proposed controller. Experimental results also show the feasibility of this technique in 2D and 3D environments.</p>\",\"PeriodicalId\":72691,\"journal\":{\"name\":\"Conference proceedings. IEEE International Conference on Systems, Man, and Cybernetics\",\"volume\":\" \",\"pages\":\"1488-1493\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1109/SMC.2013.257\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Conference proceedings. IEEE International Conference on Systems, Man, and Cybernetics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SMC.2013.257\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Conference proceedings. IEEE International Conference on Systems, Man, and Cybernetics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SMC.2013.257","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Bevel-tipped flexible needles can be robotically steered to reach clinical targets along curvilinear paths in 3D. Manual needle insertion allows the clinician to control the insertion speed, ensuring patient safety. This paper presents a control law for automatic 3D steering of manually inserted flexible needles, enabling path-following control. A look-ahead proportional controller for position and orientation is presented. The look-ahead distance is a linear function of insertion speed. Simulations in a 3D brain-like environment demonstrate the performance of the proposed controller. Experimental results also show the feasibility of this technique in 2D and 3D environments.