从压力中恢复——细胞周期的观点。

Elahe Radmaneshfar, Marco Thiel
{"title":"从压力中恢复——细胞周期的观点。","authors":"Elahe Radmaneshfar, Marco Thiel","doi":"10.6062/jcis.2012.03.01.0049","DOIUrl":null,"url":null,"abstract":"<p><p>We develop a Boolean model to explore the dynamical behaviour of budding yeast in response to osmotic and pheromone stress. Our model predicts that osmotic stress halts the cell cycle progression in either of four possible arrest points. The state of the cell at the onset of the stress dictates which arrest point is finally reached. According to our study and consistent with biological data, these cells can return to the cell cycle after removal of the stress. Moreover, the Boolean model illustrates how osmotic stress alters the state transitions of the cell. Furthermore, we investigate the influence of a particular pheromone based method for the synchronisation of the cell cycles in a population of cells. We show this technique is not a suitable method to study one of the arrest points under osmotic stress. Finally, we discuss how an osmotic stress can cause some of the so called <i>frozen</i> cells to divide. In this case the stress can move these cells to the cell cycle trajectory, such that they will replicate again.</p>","PeriodicalId":90209,"journal":{"name":"Journal of computational interdisciplinary sciences","volume":"3 1-2","pages":"33-44"},"PeriodicalIF":0.0000,"publicationDate":"2012-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3982136/pdf/emss-54547.pdf","citationCount":"0","resultStr":"{\"title\":\"Recovery from stress - a cell cycle perspective.\",\"authors\":\"Elahe Radmaneshfar, Marco Thiel\",\"doi\":\"10.6062/jcis.2012.03.01.0049\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We develop a Boolean model to explore the dynamical behaviour of budding yeast in response to osmotic and pheromone stress. Our model predicts that osmotic stress halts the cell cycle progression in either of four possible arrest points. The state of the cell at the onset of the stress dictates which arrest point is finally reached. According to our study and consistent with biological data, these cells can return to the cell cycle after removal of the stress. Moreover, the Boolean model illustrates how osmotic stress alters the state transitions of the cell. Furthermore, we investigate the influence of a particular pheromone based method for the synchronisation of the cell cycles in a population of cells. We show this technique is not a suitable method to study one of the arrest points under osmotic stress. Finally, we discuss how an osmotic stress can cause some of the so called <i>frozen</i> cells to divide. In this case the stress can move these cells to the cell cycle trajectory, such that they will replicate again.</p>\",\"PeriodicalId\":90209,\"journal\":{\"name\":\"Journal of computational interdisciplinary sciences\",\"volume\":\"3 1-2\",\"pages\":\"33-44\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3982136/pdf/emss-54547.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of computational interdisciplinary sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.6062/jcis.2012.03.01.0049\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of computational interdisciplinary sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.6062/jcis.2012.03.01.0049","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们开发了一个布尔模型来探索出芽酵母在渗透和信息素胁迫下的动态行为。我们的模型预测,渗透压力在四个可能的停止点中的任何一个停止细胞周期进程。细胞在压力开始时的状态决定了最终到达哪个停止点。根据我们的研究,与生物学数据一致,这些细胞在去除应激后可以回到细胞周期。此外,布尔模型说明了渗透应力如何改变细胞的状态转换。此外,我们研究了一种基于特定信息素的方法对细胞群体中细胞周期同步的影响。结果表明,这种方法不适用于研究渗透胁迫下的某一截止点。最后,我们讨论了渗透胁迫如何导致一些所谓的冷冻细胞分裂。在这种情况下,压力可以将这些细胞移动到细胞周期轨道上,这样它们就会再次复制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Recovery from stress - a cell cycle perspective.

We develop a Boolean model to explore the dynamical behaviour of budding yeast in response to osmotic and pheromone stress. Our model predicts that osmotic stress halts the cell cycle progression in either of four possible arrest points. The state of the cell at the onset of the stress dictates which arrest point is finally reached. According to our study and consistent with biological data, these cells can return to the cell cycle after removal of the stress. Moreover, the Boolean model illustrates how osmotic stress alters the state transitions of the cell. Furthermore, we investigate the influence of a particular pheromone based method for the synchronisation of the cell cycles in a population of cells. We show this technique is not a suitable method to study one of the arrest points under osmotic stress. Finally, we discuss how an osmotic stress can cause some of the so called frozen cells to divide. In this case the stress can move these cells to the cell cycle trajectory, such that they will replicate again.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信