{"title":"抗体治疗可增强血管紧张素ii诱导的心肌纤维化。","authors":"Nicole L Rosin, Alison J Gareau, Devin Betsch, Alec Falkenham, Mryanda J Sopel, Timothy Dg Lee, Jean-Francois Légaré","doi":"10.1186/1755-1536-7-6","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Myocardial fibrosis is a pathological process that is characterized by disrupted regulation of extracellular matrix proteins resulting in permanent scarring of the heart tissue and eventual diastolic heart failure. Pro-fibrotic molecules including transforming growth factor-β and connective tissue growth factor are expressed early in the AngiotensinII (AngII)-induced and other models of myocardial fibrosis. As such, antibody-based therapies against these and other targets are currently under development.</p><p><strong>Results: </strong>In the present study, C57Bl/6 mice were subcutaneously implanted with a mini-osmotic pump containing either AngII (2.0 μg/kg/min) or saline control for 3 days in combination with mIgG (1 mg/kg/d) injected through the tail vein. Fibrosis was assessed after picosirius red staining of myocardial cross-sections and was significantly increased after AngII exposure compared to saline control (11.37 ± 1.41%, 4.94 ± 1.15%; P <0.05). Non-specific mIgG treatment (1 mg/kg/d) significantly increased the amount of fibrosis (26.34 ± 3.03%; P <0.01). However, when AngII exposed animals were treated with a Fab fragment of the mIgG or mIgM, this exacerbation of fibrosis was no longer observed (14.49 ± 2.23%; not significantly different from AngII alone).</p><p><strong>Conclusions: </strong>These data suggest that myocardial fibrosis was increased by the addition of exogenous non-specific antibodies in an Fc-mediated manner. These findings could have substantial impact on the future experimental design of antibody-based therapeutics.</p>","PeriodicalId":12264,"journal":{"name":"Fibrogenesis & Tissue Repair","volume":"7 ","pages":"6"},"PeriodicalIF":0.0000,"publicationDate":"2014-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/1755-1536-7-6","citationCount":"2","resultStr":"{\"title\":\"Antibody therapy can enhance AngiotensinII-induced myocardial fibrosis.\",\"authors\":\"Nicole L Rosin, Alison J Gareau, Devin Betsch, Alec Falkenham, Mryanda J Sopel, Timothy Dg Lee, Jean-Francois Légaré\",\"doi\":\"10.1186/1755-1536-7-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Myocardial fibrosis is a pathological process that is characterized by disrupted regulation of extracellular matrix proteins resulting in permanent scarring of the heart tissue and eventual diastolic heart failure. Pro-fibrotic molecules including transforming growth factor-β and connective tissue growth factor are expressed early in the AngiotensinII (AngII)-induced and other models of myocardial fibrosis. As such, antibody-based therapies against these and other targets are currently under development.</p><p><strong>Results: </strong>In the present study, C57Bl/6 mice were subcutaneously implanted with a mini-osmotic pump containing either AngII (2.0 μg/kg/min) or saline control for 3 days in combination with mIgG (1 mg/kg/d) injected through the tail vein. Fibrosis was assessed after picosirius red staining of myocardial cross-sections and was significantly increased after AngII exposure compared to saline control (11.37 ± 1.41%, 4.94 ± 1.15%; P <0.05). Non-specific mIgG treatment (1 mg/kg/d) significantly increased the amount of fibrosis (26.34 ± 3.03%; P <0.01). However, when AngII exposed animals were treated with a Fab fragment of the mIgG or mIgM, this exacerbation of fibrosis was no longer observed (14.49 ± 2.23%; not significantly different from AngII alone).</p><p><strong>Conclusions: </strong>These data suggest that myocardial fibrosis was increased by the addition of exogenous non-specific antibodies in an Fc-mediated manner. These findings could have substantial impact on the future experimental design of antibody-based therapeutics.</p>\",\"PeriodicalId\":12264,\"journal\":{\"name\":\"Fibrogenesis & Tissue Repair\",\"volume\":\"7 \",\"pages\":\"6\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-04-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1186/1755-1536-7-6\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fibrogenesis & Tissue Repair\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1186/1755-1536-7-6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2014/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fibrogenesis & Tissue Repair","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/1755-1536-7-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2014/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
Antibody therapy can enhance AngiotensinII-induced myocardial fibrosis.
Background: Myocardial fibrosis is a pathological process that is characterized by disrupted regulation of extracellular matrix proteins resulting in permanent scarring of the heart tissue and eventual diastolic heart failure. Pro-fibrotic molecules including transforming growth factor-β and connective tissue growth factor are expressed early in the AngiotensinII (AngII)-induced and other models of myocardial fibrosis. As such, antibody-based therapies against these and other targets are currently under development.
Results: In the present study, C57Bl/6 mice were subcutaneously implanted with a mini-osmotic pump containing either AngII (2.0 μg/kg/min) or saline control for 3 days in combination with mIgG (1 mg/kg/d) injected through the tail vein. Fibrosis was assessed after picosirius red staining of myocardial cross-sections and was significantly increased after AngII exposure compared to saline control (11.37 ± 1.41%, 4.94 ± 1.15%; P <0.05). Non-specific mIgG treatment (1 mg/kg/d) significantly increased the amount of fibrosis (26.34 ± 3.03%; P <0.01). However, when AngII exposed animals were treated with a Fab fragment of the mIgG or mIgM, this exacerbation of fibrosis was no longer observed (14.49 ± 2.23%; not significantly different from AngII alone).
Conclusions: These data suggest that myocardial fibrosis was increased by the addition of exogenous non-specific antibodies in an Fc-mediated manner. These findings could have substantial impact on the future experimental design of antibody-based therapeutics.