S Ganesan, T Aruldoss Albert Victoire, G Vijayalakshmy
{"title":"基于无线脑机接口的生物信号非线性实时估计与检测。","authors":"S Ganesan, T Aruldoss Albert Victoire, G Vijayalakshmy","doi":"10.1504/IJBRA.2014.059518","DOIUrl":null,"url":null,"abstract":"<p><p>In this paper, the work is mainly concentrated on removing non-linear parameters to make the physiological signals more linear and reducing the complexity of the signals. This paper discusses three different types of techniques that can be successfully utilised to remove non-linear parameters in EEG and ECG. (i) Transformation technique using Discrete Walsh-Hadamard Transform (DWHT); (ii) application of fuzzy logic control and (iii) building the Adaptive Neuro-Fuzzy Inference System (ANFIS) model for fuzzy. This work has been inspired by the need to arrive at an efficient, simple, accurate and quicker method for analysis of bio-signal. </p>","PeriodicalId":35444,"journal":{"name":"International Journal of Bioinformatics Research and Applications","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2014-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1504/IJBRA.2014.059518","citationCount":"1","resultStr":"{\"title\":\"Real-time estimation and detection of non-linearity in bio-signals using wireless brain-computer interface.\",\"authors\":\"S Ganesan, T Aruldoss Albert Victoire, G Vijayalakshmy\",\"doi\":\"10.1504/IJBRA.2014.059518\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In this paper, the work is mainly concentrated on removing non-linear parameters to make the physiological signals more linear and reducing the complexity of the signals. This paper discusses three different types of techniques that can be successfully utilised to remove non-linear parameters in EEG and ECG. (i) Transformation technique using Discrete Walsh-Hadamard Transform (DWHT); (ii) application of fuzzy logic control and (iii) building the Adaptive Neuro-Fuzzy Inference System (ANFIS) model for fuzzy. This work has been inspired by the need to arrive at an efficient, simple, accurate and quicker method for analysis of bio-signal. </p>\",\"PeriodicalId\":35444,\"journal\":{\"name\":\"International Journal of Bioinformatics Research and Applications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1504/IJBRA.2014.059518\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Bioinformatics Research and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1504/IJBRA.2014.059518\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Health Professions\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Bioinformatics Research and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJBRA.2014.059518","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Health Professions","Score":null,"Total":0}
Real-time estimation and detection of non-linearity in bio-signals using wireless brain-computer interface.
In this paper, the work is mainly concentrated on removing non-linear parameters to make the physiological signals more linear and reducing the complexity of the signals. This paper discusses three different types of techniques that can be successfully utilised to remove non-linear parameters in EEG and ECG. (i) Transformation technique using Discrete Walsh-Hadamard Transform (DWHT); (ii) application of fuzzy logic control and (iii) building the Adaptive Neuro-Fuzzy Inference System (ANFIS) model for fuzzy. This work has been inspired by the need to arrive at an efficient, simple, accurate and quicker method for analysis of bio-signal.
期刊介绍:
Bioinformatics is an interdisciplinary research field that combines biology, computer science, mathematics and statistics into a broad-based field that will have profound impacts on all fields of biology. The emphasis of IJBRA is on basic bioinformatics research methods, tool development, performance evaluation and their applications in biology. IJBRA addresses the most innovative developments, research issues and solutions in bioinformatics and computational biology and their applications. Topics covered include Databases, bio-grid, system biology Biomedical image processing, modelling and simulation Bio-ontology and data mining, DNA assembly, clustering, mapping Computational genomics/proteomics Silico technology: computational intelligence, high performance computing E-health, telemedicine Gene expression, microarrays, identification, annotation Genetic algorithms, fuzzy logic, neural networks, data visualisation Hidden Markov models, machine learning, support vector machines Molecular evolution, phylogeny, modelling, simulation, sequence analysis Parallel algorithms/architectures, computational structural biology Phylogeny reconstruction algorithms, physiome, protein structure prediction Sequence assembly, search, alignment Signalling/computational biomedical data engineering Simulated annealing, statistical analysis, stochastic grammars.