聚合物添加剂对酸性硫酸电解质电沉积铜的结构和形态性能的影响:实验和理论研究

IF 4.5 3区 化学 Q1 Chemical Engineering
Zakia Aribou , Nidal Khemmou , Rida Allah Belakhmima , Iman Chaouki , Mohamed Ebn Touhami , Rachid Touir , Said Bakkali
{"title":"聚合物添加剂对酸性硫酸电解质电沉积铜的结构和形态性能的影响:实验和理论研究","authors":"Zakia Aribou ,&nbsp;Nidal Khemmou ,&nbsp;Rida Allah Belakhmima ,&nbsp;Iman Chaouki ,&nbsp;Mohamed Ebn Touhami ,&nbsp;Rachid Touir ,&nbsp;Said Bakkali","doi":"10.1016/j.jelechem.2023.117722","DOIUrl":null,"url":null,"abstract":"<div><p>In this study, the effects of poly(oxy-1,2-ethanediyl), alpha-(4-nonylphenyl)-omega-hydroxy-,branched (ANP) under various concentrations on the Cu-electrodeposition on the brass surface were investigated. The leveling, grain refining, and brightening agent effects have been identified for the used ANP additive. In addition, the Cu-electrodeposits morphology was studied by Scanning Electron Microscopy (SEM) coupled with Energy dispersive X-ray analysis (EDS) and Atomic Force Microscopy (AFM). The cyclic voltammetry technique, the quantum chemical calculations, and molecular dynamics (MD) simulations were also used to explain the Cu-electrodeposition mechanism. Finally, electrochemical measurements were employed to study the ANP effect on the Cu-electrodeposit resistance in a 3.5 wt% NaCl medium. The cyclic voltammetry demonstrated that the studied system is irreversible and that the kinetics of the Cu-electrodeposition reaction are controlled by diffusion. In addition, the SEM/EDS and AFM results revealed that the ANP addition increases the Cu-electrodeposit with an improvement in its roughness degree and crystallite size. In the same context, the quantum chemical calculations and molecular dynamics (MD) simulations suggested that ANP may be strongly adsorbed on the brass and Cu-electrodeposit surfaces. Toward the end, the electrochemical measurements results indicated that the polarization resistance of the Cu-deposit increases with the presence of ANP in the copper bath, demonstrating its good corrosion resistance in marine medium.</p></div>","PeriodicalId":50545,"journal":{"name":"Journal of Electroanalytical Chemistry","volume":"946 ","pages":"Article 117722"},"PeriodicalIF":4.5000,"publicationDate":"2023-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Effect of polymer additive on structural and morphological properties of Cu-electrodeposition from an acid sulfate electrolyte: Experimental and theoretical studies\",\"authors\":\"Zakia Aribou ,&nbsp;Nidal Khemmou ,&nbsp;Rida Allah Belakhmima ,&nbsp;Iman Chaouki ,&nbsp;Mohamed Ebn Touhami ,&nbsp;Rachid Touir ,&nbsp;Said Bakkali\",\"doi\":\"10.1016/j.jelechem.2023.117722\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this study, the effects of poly(oxy-1,2-ethanediyl), alpha-(4-nonylphenyl)-omega-hydroxy-,branched (ANP) under various concentrations on the Cu-electrodeposition on the brass surface were investigated. The leveling, grain refining, and brightening agent effects have been identified for the used ANP additive. In addition, the Cu-electrodeposits morphology was studied by Scanning Electron Microscopy (SEM) coupled with Energy dispersive X-ray analysis (EDS) and Atomic Force Microscopy (AFM). The cyclic voltammetry technique, the quantum chemical calculations, and molecular dynamics (MD) simulations were also used to explain the Cu-electrodeposition mechanism. Finally, electrochemical measurements were employed to study the ANP effect on the Cu-electrodeposit resistance in a 3.5 wt% NaCl medium. The cyclic voltammetry demonstrated that the studied system is irreversible and that the kinetics of the Cu-electrodeposition reaction are controlled by diffusion. In addition, the SEM/EDS and AFM results revealed that the ANP addition increases the Cu-electrodeposit with an improvement in its roughness degree and crystallite size. In the same context, the quantum chemical calculations and molecular dynamics (MD) simulations suggested that ANP may be strongly adsorbed on the brass and Cu-electrodeposit surfaces. Toward the end, the electrochemical measurements results indicated that the polarization resistance of the Cu-deposit increases with the presence of ANP in the copper bath, demonstrating its good corrosion resistance in marine medium.</p></div>\",\"PeriodicalId\":50545,\"journal\":{\"name\":\"Journal of Electroanalytical Chemistry\",\"volume\":\"946 \",\"pages\":\"Article 117722\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2023-08-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Electroanalytical Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1572665723005829\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Chemical Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Electroanalytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1572665723005829","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Chemical Engineering","Score":null,"Total":0}
引用次数: 2

摘要

本研究研究了不同浓度的聚(氧-1,2-乙二基)- α -(4-壬基苯基)- ω -羟基-支化(ANP)对铜表面电沉积的影响。确定了所用ANP添加剂的流平、晶粒细化和光亮作用。此外,利用扫描电子显微镜(SEM)、x射线能谱分析(EDS)和原子力显微镜(AFM)研究了cu镀层的形貌。循环伏安技术、量子化学计算和分子动力学(MD)模拟也被用来解释cu电沉积机理。最后,采用电化学测量方法研究了在3.5 wt% NaCl介质中ANP对cu电沉积电阻的影响。循环伏安法表明,所研究的体系是不可逆的,cu电沉积反应的动力学受扩散控制。此外,SEM/EDS和AFM结果表明,ANP的加入增加了cu镀层的粗糙度和晶粒尺寸。在相同的背景下,量子化学计算和分子动力学(MD)模拟表明,ANP可能在黄铜和铜镀层表面被强烈吸附。最后,电化学测量结果表明,铜浴中ANP的存在使镀层的极化电阻增大,表明其在海洋介质中具有良好的耐腐蚀性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Effect of polymer additive on structural and morphological properties of Cu-electrodeposition from an acid sulfate electrolyte: Experimental and theoretical studies

Effect of polymer additive on structural and morphological properties of Cu-electrodeposition from an acid sulfate electrolyte: Experimental and theoretical studies

In this study, the effects of poly(oxy-1,2-ethanediyl), alpha-(4-nonylphenyl)-omega-hydroxy-,branched (ANP) under various concentrations on the Cu-electrodeposition on the brass surface were investigated. The leveling, grain refining, and brightening agent effects have been identified for the used ANP additive. In addition, the Cu-electrodeposits morphology was studied by Scanning Electron Microscopy (SEM) coupled with Energy dispersive X-ray analysis (EDS) and Atomic Force Microscopy (AFM). The cyclic voltammetry technique, the quantum chemical calculations, and molecular dynamics (MD) simulations were also used to explain the Cu-electrodeposition mechanism. Finally, electrochemical measurements were employed to study the ANP effect on the Cu-electrodeposit resistance in a 3.5 wt% NaCl medium. The cyclic voltammetry demonstrated that the studied system is irreversible and that the kinetics of the Cu-electrodeposition reaction are controlled by diffusion. In addition, the SEM/EDS and AFM results revealed that the ANP addition increases the Cu-electrodeposit with an improvement in its roughness degree and crystallite size. In the same context, the quantum chemical calculations and molecular dynamics (MD) simulations suggested that ANP may be strongly adsorbed on the brass and Cu-electrodeposit surfaces. Toward the end, the electrochemical measurements results indicated that the polarization resistance of the Cu-deposit increases with the presence of ANP in the copper bath, demonstrating its good corrosion resistance in marine medium.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Electroanalytical Chemistry
Journal of Electroanalytical Chemistry Chemical Engineering-General Chemical Engineering
CiteScore
7.50
自引率
6.70%
发文量
912
审稿时长
>12 weeks
期刊介绍: The Journal of Electroanalytical Chemistry is the foremost international journal devoted to the interdisciplinary subject of electrochemistry in all its aspects, theoretical as well as applied. Electrochemistry is a wide ranging area that is in a state of continuous evolution. Rather than compiling a long list of topics covered by the Journal, the editors would like to draw particular attention to the key issues of novelty, topicality and quality. Papers should present new and interesting electrochemical science in a way that is accessible to the reader. The presentation and discussion should be at a level that is consistent with the international status of the Journal. Reports describing the application of well-established techniques to problems that are essentially technical will not be accepted. Similarly, papers that report observations but fail to provide adequate interpretation will be rejected by the Editors. Papers dealing with technical electrochemistry should be submitted to other specialist journals unless the authors can show that their work provides substantially new insights into electrochemical processes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信