Abu Talha Aqueel Ahmed , Sankar Sekar , Shubhangi S. Khadtare , Nurul Taufiqu Rochman , Sejoon Lee , Hyungsang Kim , Deuk Young Kim , Hyunsik Im , Abu Saad Ansari
{"title":"促进了MnCo2O4电催化剂对强化析氧反应的催化表面工程","authors":"Abu Talha Aqueel Ahmed , Sankar Sekar , Shubhangi S. Khadtare , Nurul Taufiqu Rochman , Sejoon Lee , Hyungsang Kim , Deuk Young Kim , Hyunsik Im , Abu Saad Ansari","doi":"10.1016/j.jelechem.2023.117716","DOIUrl":null,"url":null,"abstract":"<div><p>The overall conversion efficiency of water electrolysis is primarily restricted by the sluggish kinetics of the oxygen evolution reaction (OER). To overcome the OER bottleneck, fundamental scientific attention is keenly directed toward the development of durable, cost-effective, and highly efficient catalysts, and therefore, the focus of current research. Herein, we report the facile fabrication of promising noble–metal–free oxygen defects engineered MnCo<sub>2</sub>O<sub>4</sub> (O<sub>d</sub>-MnCo<sub>2</sub>O<sub>4</sub>) catalyst as a highly efficient OER water electrocatalyst in an alkaline KOH medium. The MnCo<sub>2</sub>O<sub>4</sub> nanosheet is directly grown on the nickel foam and dramatically changes to a crumpled sphere after NaBH<sub>4</sub> treatment, which results in increased oxygen defects (O<sub>d</sub>). The engineered O<sub>d</sub> in MnCo<sub>2</sub>O<sub>4</sub> might modify their electronic structure effectively, which results in improved electrical conductivity and a large quantity of electrochemically accessible active surface area. The O<sub>d</sub>-MnCo<sub>2</sub>O<sub>4</sub> catalyst demonstrates an outstanding OER activity and exhibits a small overpotential of 250 and 316 mV at a current density of 10 and 100 mA cm<sup>−2</sup>, respectively, with a modest Tafel slope of 64 mV dec<sup>–1</sup>. The O<sub>d</sub>-MnCo<sub>2</sub>O<sub>4</sub> catalyst also demonstrates excellent perseverance till 60 h upon continuous chronopotentiometric test even at 100 mA cm<sup>−2</sup> and further reveals a static potential response at low and high rates. The excellent OER performance is ascribed to enhanced electrochemically active sites and improved electronic conductivity aroused from the NaBH<sub>4</sub> reduction.</p></div>","PeriodicalId":50545,"journal":{"name":"Journal of Electroanalytical Chemistry","volume":"946 ","pages":"Article 117716"},"PeriodicalIF":4.5000,"publicationDate":"2023-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Facilitated catalytic surface engineering of MnCo2O4 electrocatalyst towards enhanced oxygen evolution reaction\",\"authors\":\"Abu Talha Aqueel Ahmed , Sankar Sekar , Shubhangi S. Khadtare , Nurul Taufiqu Rochman , Sejoon Lee , Hyungsang Kim , Deuk Young Kim , Hyunsik Im , Abu Saad Ansari\",\"doi\":\"10.1016/j.jelechem.2023.117716\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The overall conversion efficiency of water electrolysis is primarily restricted by the sluggish kinetics of the oxygen evolution reaction (OER). To overcome the OER bottleneck, fundamental scientific attention is keenly directed toward the development of durable, cost-effective, and highly efficient catalysts, and therefore, the focus of current research. Herein, we report the facile fabrication of promising noble–metal–free oxygen defects engineered MnCo<sub>2</sub>O<sub>4</sub> (O<sub>d</sub>-MnCo<sub>2</sub>O<sub>4</sub>) catalyst as a highly efficient OER water electrocatalyst in an alkaline KOH medium. The MnCo<sub>2</sub>O<sub>4</sub> nanosheet is directly grown on the nickel foam and dramatically changes to a crumpled sphere after NaBH<sub>4</sub> treatment, which results in increased oxygen defects (O<sub>d</sub>). The engineered O<sub>d</sub> in MnCo<sub>2</sub>O<sub>4</sub> might modify their electronic structure effectively, which results in improved electrical conductivity and a large quantity of electrochemically accessible active surface area. The O<sub>d</sub>-MnCo<sub>2</sub>O<sub>4</sub> catalyst demonstrates an outstanding OER activity and exhibits a small overpotential of 250 and 316 mV at a current density of 10 and 100 mA cm<sup>−2</sup>, respectively, with a modest Tafel slope of 64 mV dec<sup>–1</sup>. The O<sub>d</sub>-MnCo<sub>2</sub>O<sub>4</sub> catalyst also demonstrates excellent perseverance till 60 h upon continuous chronopotentiometric test even at 100 mA cm<sup>−2</sup> and further reveals a static potential response at low and high rates. The excellent OER performance is ascribed to enhanced electrochemically active sites and improved electronic conductivity aroused from the NaBH<sub>4</sub> reduction.</p></div>\",\"PeriodicalId\":50545,\"journal\":{\"name\":\"Journal of Electroanalytical Chemistry\",\"volume\":\"946 \",\"pages\":\"Article 117716\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2023-08-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Electroanalytical Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1572665723005763\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Chemical Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Electroanalytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1572665723005763","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Chemical Engineering","Score":null,"Total":0}
引用次数: 0
摘要
电解水的整体转化效率主要受析氧反应动力学缓慢的制约。为了克服OER瓶颈,基础科学关注的重点是开发耐用、经济、高效的催化剂,因此,这是当前研究的重点。在此,我们报告了在碱性KOH介质中易于制备的无贵金属氧缺陷MnCo2O4 (Od-MnCo2O4)催化剂作为高效的OER水电催化剂。MnCo2O4纳米片直接生长在泡沫镍表面,经过NaBH4处理后,纳米片表面呈皱缩球形,导致氧缺陷(Od)增加。在MnCo2O4中加入工程化的Od可以有效地改变其电子结构,从而提高其导电性和大量的电化学可达活性表面积。Od-MnCo2O4催化剂表现出出色的OER活性,在电流密度为10和100 mA cm−2时,过电位分别为250和316 mV,塔菲尔斜率为64 mV / dec1。Od-MnCo2O4催化剂即使在100 mA cm - 2的连续时间电位测试中也表现出60 h的优异持久性,并进一步显示出低和高速率下的静态电位响应。优异的OER性能归因于NaBH4还原所产生的电化学活性位点的增强和电子导电性的提高。
Facilitated catalytic surface engineering of MnCo2O4 electrocatalyst towards enhanced oxygen evolution reaction
The overall conversion efficiency of water electrolysis is primarily restricted by the sluggish kinetics of the oxygen evolution reaction (OER). To overcome the OER bottleneck, fundamental scientific attention is keenly directed toward the development of durable, cost-effective, and highly efficient catalysts, and therefore, the focus of current research. Herein, we report the facile fabrication of promising noble–metal–free oxygen defects engineered MnCo2O4 (Od-MnCo2O4) catalyst as a highly efficient OER water electrocatalyst in an alkaline KOH medium. The MnCo2O4 nanosheet is directly grown on the nickel foam and dramatically changes to a crumpled sphere after NaBH4 treatment, which results in increased oxygen defects (Od). The engineered Od in MnCo2O4 might modify their electronic structure effectively, which results in improved electrical conductivity and a large quantity of electrochemically accessible active surface area. The Od-MnCo2O4 catalyst demonstrates an outstanding OER activity and exhibits a small overpotential of 250 and 316 mV at a current density of 10 and 100 mA cm−2, respectively, with a modest Tafel slope of 64 mV dec–1. The Od-MnCo2O4 catalyst also demonstrates excellent perseverance till 60 h upon continuous chronopotentiometric test even at 100 mA cm−2 and further reveals a static potential response at low and high rates. The excellent OER performance is ascribed to enhanced electrochemically active sites and improved electronic conductivity aroused from the NaBH4 reduction.
期刊介绍:
The Journal of Electroanalytical Chemistry is the foremost international journal devoted to the interdisciplinary subject of electrochemistry in all its aspects, theoretical as well as applied.
Electrochemistry is a wide ranging area that is in a state of continuous evolution. Rather than compiling a long list of topics covered by the Journal, the editors would like to draw particular attention to the key issues of novelty, topicality and quality. Papers should present new and interesting electrochemical science in a way that is accessible to the reader. The presentation and discussion should be at a level that is consistent with the international status of the Journal. Reports describing the application of well-established techniques to problems that are essentially technical will not be accepted. Similarly, papers that report observations but fail to provide adequate interpretation will be rejected by the Editors. Papers dealing with technical electrochemistry should be submitted to other specialist journals unless the authors can show that their work provides substantially new insights into electrochemical processes.