{"title":"利用线粒体d -环变异预测亨廷顿病的风险。","authors":"Kazem Mousavizadeh, Peyman Rajabi, Mahsa Alaee, Sepideh Dadgar, Massoud Houshmand","doi":"10.3109/19401736.2013.878902","DOIUrl":null,"url":null,"abstract":"<p><p>Huntington's disease (HD) is an inherited autosomal neurodegenerative disease caused by the abnormal expansion of the CAG repeats in the Huntingtin (Htt) gene. It has been proven that mitochondrial dysfunction is contributed to the pathogenesis of Huntington's disease. The mitochondrial displacement loop (D-loop) is proven to accumulate mutations at a higher rate than other regions of mtDNA. Thus, we hypothesized that specific SNPs in the D-loop may contribute to the pathogenesis of Huntington's disease. In the present study, 30 patients with Huntington's disease and 463 healthy controls were evaluated for mitochondrial mutation sites within the D-loop region using PCR-sequencing method. Sequence analysis revealed 35 variations in HD group from Cambridge Mitochondrial Sequences. A significant difference (p < 0.05) was seen between patients and control group in eight SNPs. Polymorphisms at C16069T, T16126C, T16189C, T16519C and C16223T were correlated with an increased risk of HD while SNPs at C16150T, T16086C and T16195C were associated with a decreased risk of Huntington's disease.</p>","PeriodicalId":49805,"journal":{"name":"Mitochondrial Dna","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2015-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.3109/19401736.2013.878902","citationCount":"14","resultStr":"{\"title\":\"Usage of mitochondrial D-loop variation to predict risk for Huntington disease.\",\"authors\":\"Kazem Mousavizadeh, Peyman Rajabi, Mahsa Alaee, Sepideh Dadgar, Massoud Houshmand\",\"doi\":\"10.3109/19401736.2013.878902\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Huntington's disease (HD) is an inherited autosomal neurodegenerative disease caused by the abnormal expansion of the CAG repeats in the Huntingtin (Htt) gene. It has been proven that mitochondrial dysfunction is contributed to the pathogenesis of Huntington's disease. The mitochondrial displacement loop (D-loop) is proven to accumulate mutations at a higher rate than other regions of mtDNA. Thus, we hypothesized that specific SNPs in the D-loop may contribute to the pathogenesis of Huntington's disease. In the present study, 30 patients with Huntington's disease and 463 healthy controls were evaluated for mitochondrial mutation sites within the D-loop region using PCR-sequencing method. Sequence analysis revealed 35 variations in HD group from Cambridge Mitochondrial Sequences. A significant difference (p < 0.05) was seen between patients and control group in eight SNPs. Polymorphisms at C16069T, T16126C, T16189C, T16519C and C16223T were correlated with an increased risk of HD while SNPs at C16150T, T16086C and T16195C were associated with a decreased risk of Huntington's disease.</p>\",\"PeriodicalId\":49805,\"journal\":{\"name\":\"Mitochondrial Dna\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.3109/19401736.2013.878902\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mitochondrial Dna\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3109/19401736.2013.878902\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2014/1/29 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mitochondrial Dna","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3109/19401736.2013.878902","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2014/1/29 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
Usage of mitochondrial D-loop variation to predict risk for Huntington disease.
Huntington's disease (HD) is an inherited autosomal neurodegenerative disease caused by the abnormal expansion of the CAG repeats in the Huntingtin (Htt) gene. It has been proven that mitochondrial dysfunction is contributed to the pathogenesis of Huntington's disease. The mitochondrial displacement loop (D-loop) is proven to accumulate mutations at a higher rate than other regions of mtDNA. Thus, we hypothesized that specific SNPs in the D-loop may contribute to the pathogenesis of Huntington's disease. In the present study, 30 patients with Huntington's disease and 463 healthy controls were evaluated for mitochondrial mutation sites within the D-loop region using PCR-sequencing method. Sequence analysis revealed 35 variations in HD group from Cambridge Mitochondrial Sequences. A significant difference (p < 0.05) was seen between patients and control group in eight SNPs. Polymorphisms at C16069T, T16126C, T16189C, T16519C and C16223T were correlated with an increased risk of HD while SNPs at C16150T, T16086C and T16195C were associated with a decreased risk of Huntington's disease.
期刊介绍:
Previously published under the title DNA Sequence (Vols 1-19.3), Mitochondrial DNA accepts original high-quality reports based on mapping, sequencing and analysis of mitochondrial DNA and RNA. Descriptive papers on DNA sequences from mitochondrial genomes, and also analytical papers in the areas of population genetics, medical genetics, phylogenetics and human evolution that use mitochondrial DNA as a source of evidence for studies will be considered for publication. The editorial board will also consider manuscripts that examine population genetic and systematic theory that specifically address the use of mitochondrial DNA sequences.