关于小面积比例的推论。

Shijie Chen, P Lahiri
{"title":"关于小面积比例的推论。","authors":"Shijie Chen,&nbsp;P Lahiri","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Design-based methods are generally inefficient for making inferences about small area proportions for rare events. In this paper, we discuss an alternative hierarchical model and the associated hierarchical Bayes methodology. Sufficient conditions for propriety of the posterior distributions of relevant parameters are presented.</p>","PeriodicalId":89431,"journal":{"name":"Journal of the Indian Society of Agricultural Statistics. Indian Society of Agricultural Statistics","volume":"66 1","pages":"121-124"},"PeriodicalIF":0.0000,"publicationDate":"2012-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3896051/pdf/nihms535133.pdf","citationCount":"0","resultStr":"{\"title\":\"Inferences on Small Area Proportions.\",\"authors\":\"Shijie Chen,&nbsp;P Lahiri\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Design-based methods are generally inefficient for making inferences about small area proportions for rare events. In this paper, we discuss an alternative hierarchical model and the associated hierarchical Bayes methodology. Sufficient conditions for propriety of the posterior distributions of relevant parameters are presented.</p>\",\"PeriodicalId\":89431,\"journal\":{\"name\":\"Journal of the Indian Society of Agricultural Statistics. Indian Society of Agricultural Statistics\",\"volume\":\"66 1\",\"pages\":\"121-124\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3896051/pdf/nihms535133.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Indian Society of Agricultural Statistics. Indian Society of Agricultural Statistics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Indian Society of Agricultural Statistics. Indian Society of Agricultural Statistics","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

基于设计的方法在对罕见事件的小面积比例进行推断时通常效率低下。在本文中,我们讨论了另一种层次模型和相关的层次贝叶斯方法。给出了相关参数后验分布适宜性的充分条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Inferences on Small Area Proportions.

Design-based methods are generally inefficient for making inferences about small area proportions for rare events. In this paper, we discuss an alternative hierarchical model and the associated hierarchical Bayes methodology. Sufficient conditions for propriety of the posterior distributions of relevant parameters are presented.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信