{"title":"CD40聚类动力学的数学模型。","authors":"Uddipan Sarma, Prashant M Gade, Bhaskar Saha","doi":"10.1007/s11693-013-9112-8","DOIUrl":null,"url":null,"abstract":"<p><p>Ligand bound-receptors in a signalosome complex trigger signals to determine cellular functions. Upon ligand binding, the ligand-receptor complexes form clusters on cell membrane. Guided by the previous experimental reports on the cluster formation of CD40, a trans membrane receptor for CD40-ligand, we built a minimal model of the receptor cluster formation. In this model, we studied co-operative and non-co-operative clustering of a maximum of four CD40 molecules assuming a positive mediator of clustering such as cholesterol to be present in both cases. We observed that co-operative interactions between CD40 molecules resulted in more of the largest CD40 clusters than that observed with the non-co-operatively interacting CD40 molecules. We performed global sensitivity analysis on the model parameters and the analyses suggested that cholesterol influenced only the initial stage of the co-operatively clustering CD40 molecules but it affects both the initial and the final stages in case of the non-co-operatively clustering CD40 molecules. Robustness analyses revealed that in both co-operative and non-co-operative interactions, the higher order clusters beyond a critical size are more robust with respect to alterations in the environmental parameters including the cholesterol. Thus, the role of co-operative and non-co-operative interactions in environment-influenced receptor clustering is reported for the first time. </p>","PeriodicalId":22161,"journal":{"name":"Systems and Synthetic Biology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s11693-013-9112-8","citationCount":"2","resultStr":"{\"title\":\"A mathematical model for dynamics of CD40 clustering.\",\"authors\":\"Uddipan Sarma, Prashant M Gade, Bhaskar Saha\",\"doi\":\"10.1007/s11693-013-9112-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Ligand bound-receptors in a signalosome complex trigger signals to determine cellular functions. Upon ligand binding, the ligand-receptor complexes form clusters on cell membrane. Guided by the previous experimental reports on the cluster formation of CD40, a trans membrane receptor for CD40-ligand, we built a minimal model of the receptor cluster formation. In this model, we studied co-operative and non-co-operative clustering of a maximum of four CD40 molecules assuming a positive mediator of clustering such as cholesterol to be present in both cases. We observed that co-operative interactions between CD40 molecules resulted in more of the largest CD40 clusters than that observed with the non-co-operatively interacting CD40 molecules. We performed global sensitivity analysis on the model parameters and the analyses suggested that cholesterol influenced only the initial stage of the co-operatively clustering CD40 molecules but it affects both the initial and the final stages in case of the non-co-operatively clustering CD40 molecules. Robustness analyses revealed that in both co-operative and non-co-operative interactions, the higher order clusters beyond a critical size are more robust with respect to alterations in the environmental parameters including the cholesterol. Thus, the role of co-operative and non-co-operative interactions in environment-influenced receptor clustering is reported for the first time. </p>\",\"PeriodicalId\":22161,\"journal\":{\"name\":\"Systems and Synthetic Biology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/s11693-013-9112-8\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Systems and Synthetic Biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s11693-013-9112-8\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2013/7/17 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Systems and Synthetic Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s11693-013-9112-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2013/7/17 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
A mathematical model for dynamics of CD40 clustering.
Ligand bound-receptors in a signalosome complex trigger signals to determine cellular functions. Upon ligand binding, the ligand-receptor complexes form clusters on cell membrane. Guided by the previous experimental reports on the cluster formation of CD40, a trans membrane receptor for CD40-ligand, we built a minimal model of the receptor cluster formation. In this model, we studied co-operative and non-co-operative clustering of a maximum of four CD40 molecules assuming a positive mediator of clustering such as cholesterol to be present in both cases. We observed that co-operative interactions between CD40 molecules resulted in more of the largest CD40 clusters than that observed with the non-co-operatively interacting CD40 molecules. We performed global sensitivity analysis on the model parameters and the analyses suggested that cholesterol influenced only the initial stage of the co-operatively clustering CD40 molecules but it affects both the initial and the final stages in case of the non-co-operatively clustering CD40 molecules. Robustness analyses revealed that in both co-operative and non-co-operative interactions, the higher order clusters beyond a critical size are more robust with respect to alterations in the environmental parameters including the cholesterol. Thus, the role of co-operative and non-co-operative interactions in environment-influenced receptor clustering is reported for the first time.