Valerie T Tripp, Johnathan C Maza, Douglas D Young
{"title":"快速微波介导和低温细菌转化的发展。","authors":"Valerie T Tripp, Johnathan C Maza, Douglas D Young","doi":"10.1007/s12154-013-0095-4","DOIUrl":null,"url":null,"abstract":"<p><p>The introduction of exogenous DNA into Escherichia coli is a cornerstone of molecular biology. Herein, we investigate two new mechanisms for bacterial transformation involving either the use of microwave irradiation or a freeze-thaw protocol in liquid nitrogen. Ultimately, both methods afforded successful transfer of plasmid DNA into bacterial cells, with the freeze-thaw technique yielding efficiencies of ~10(5). More importantly, both techniques effectively eliminated the need for the preparation of competent cells. </p>","PeriodicalId":15296,"journal":{"name":"Journal of Chemical Biology","volume":"6 3","pages":"135-40"},"PeriodicalIF":0.0000,"publicationDate":"2013-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s12154-013-0095-4","citationCount":"7","resultStr":"{\"title\":\"Development of rapid microwave-mediated and low-temperature bacterial transformations.\",\"authors\":\"Valerie T Tripp, Johnathan C Maza, Douglas D Young\",\"doi\":\"10.1007/s12154-013-0095-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The introduction of exogenous DNA into Escherichia coli is a cornerstone of molecular biology. Herein, we investigate two new mechanisms for bacterial transformation involving either the use of microwave irradiation or a freeze-thaw protocol in liquid nitrogen. Ultimately, both methods afforded successful transfer of plasmid DNA into bacterial cells, with the freeze-thaw technique yielding efficiencies of ~10(5). More importantly, both techniques effectively eliminated the need for the preparation of competent cells. </p>\",\"PeriodicalId\":15296,\"journal\":{\"name\":\"Journal of Chemical Biology\",\"volume\":\"6 3\",\"pages\":\"135-40\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-05-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/s12154-013-0095-4\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Chemical Biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s12154-013-0095-4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s12154-013-0095-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Development of rapid microwave-mediated and low-temperature bacterial transformations.
The introduction of exogenous DNA into Escherichia coli is a cornerstone of molecular biology. Herein, we investigate two new mechanisms for bacterial transformation involving either the use of microwave irradiation or a freeze-thaw protocol in liquid nitrogen. Ultimately, both methods afforded successful transfer of plasmid DNA into bacterial cells, with the freeze-thaw technique yielding efficiencies of ~10(5). More importantly, both techniques effectively eliminated the need for the preparation of competent cells.