{"title":"利用生物学特征优化miRNA-mRNA关系预测。","authors":"Jasjit K Banwait, Hesham H Ali, Dhundy R Bastola","doi":"10.1504/IJCBDD.2014.058587","DOIUrl":null,"url":null,"abstract":"<p><p>MicroRNAs are small (approx. 22nt) non-coding RNAs that regulate the expression of genes by either degrading messenger-RNA (mRNA) that has already been transcribed or by repressing the translation of mRNA, thus inhibiting protein production. This mechanism of gene regulation by binding of the miRNA to 3-prime-untranslated region of target mRNAs has been recently discovered. This sequence-specific post-transcriptional gene regulation process affects large set of genes involved in number of biological pathways. Mapping of 7nt long miRNA seed sequence to the target gene has been a standard way of predicting miRNA targets. In this study, we develop a framework to enrich the human miRNA-mRNA relationship based on genomic and structural information. </p>","PeriodicalId":39227,"journal":{"name":"International Journal of Computational Biology and Drug Design","volume":"7 1","pages":"45-60"},"PeriodicalIF":0.0000,"publicationDate":"2014-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1504/IJCBDD.2014.058587","citationCount":"4","resultStr":"{\"title\":\"Optimisation of miRNA-mRNA relationship prediction using biological features.\",\"authors\":\"Jasjit K Banwait, Hesham H Ali, Dhundy R Bastola\",\"doi\":\"10.1504/IJCBDD.2014.058587\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>MicroRNAs are small (approx. 22nt) non-coding RNAs that regulate the expression of genes by either degrading messenger-RNA (mRNA) that has already been transcribed or by repressing the translation of mRNA, thus inhibiting protein production. This mechanism of gene regulation by binding of the miRNA to 3-prime-untranslated region of target mRNAs has been recently discovered. This sequence-specific post-transcriptional gene regulation process affects large set of genes involved in number of biological pathways. Mapping of 7nt long miRNA seed sequence to the target gene has been a standard way of predicting miRNA targets. In this study, we develop a framework to enrich the human miRNA-mRNA relationship based on genomic and structural information. </p>\",\"PeriodicalId\":39227,\"journal\":{\"name\":\"International Journal of Computational Biology and Drug Design\",\"volume\":\"7 1\",\"pages\":\"45-60\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1504/IJCBDD.2014.058587\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Computational Biology and Drug Design\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1504/IJCBDD.2014.058587\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2014/1/9 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"Pharmacology, Toxicology and Pharmaceutics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computational Biology and Drug Design","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJCBDD.2014.058587","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2014/1/9 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"Pharmacology, Toxicology and Pharmaceutics","Score":null,"Total":0}
Optimisation of miRNA-mRNA relationship prediction using biological features.
MicroRNAs are small (approx. 22nt) non-coding RNAs that regulate the expression of genes by either degrading messenger-RNA (mRNA) that has already been transcribed or by repressing the translation of mRNA, thus inhibiting protein production. This mechanism of gene regulation by binding of the miRNA to 3-prime-untranslated region of target mRNAs has been recently discovered. This sequence-specific post-transcriptional gene regulation process affects large set of genes involved in number of biological pathways. Mapping of 7nt long miRNA seed sequence to the target gene has been a standard way of predicting miRNA targets. In this study, we develop a framework to enrich the human miRNA-mRNA relationship based on genomic and structural information.