{"title":"基于mtDNA控制区的陕西秦岭青鲑科短爪菌种群系统地理结构研究","authors":"Haixia Liu, Yang Li, Xiaolin Liu, Dongmei Xiong, Lixin Wang, Guiwei Zou, Qiwei Wei","doi":"10.3109/19401736.2013.865168","DOIUrl":null,"url":null,"abstract":"<p><p>Brachymystax lenok tsinlingensis is an endangered freshwater fish and distributed in mountains steams of Qinling Mountains, China. In this study, a comparative study of the mtDNA control region (D-loop) was performed to analyze its natural population structure and the genetic diversity of 53 individuals from four locations (TB, YX, LX and ZZ populations). Sequence analysis revealed three different domains and two feature sequences of the control region. The estimated haplotype and nucleotide diversity were 9 and 0.0023, respectively. Genetic structure analysis showed a high-level genetic diversity of B. lenok tisnlingensis (h = 0.6060 ± 0.1499). The AMOVA analysis indicated that 26.02% of total variation came from individual populations, and 73.98% from variation within the four geographic populations, which showed low genetic differentiation between the four geographic groups. Test of neutral evolution and mismatch distribution indicated that no historical expansion occurred in these populations. The high genetic diversity and low genetic differentiation would provide new information for conservation and exploitation of this species.</p>","PeriodicalId":49805,"journal":{"name":"Mitochondrial Dna","volume":"26 4","pages":"532-7"},"PeriodicalIF":0.0000,"publicationDate":"2015-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.3109/19401736.2013.865168","citationCount":"16","resultStr":"{\"title\":\"Phylogeographic structure of Brachymystax lenok tsinlingensis (Salmonidae) populations in the Qinling Mountains, Shaanxi, based on mtDNA control region.\",\"authors\":\"Haixia Liu, Yang Li, Xiaolin Liu, Dongmei Xiong, Lixin Wang, Guiwei Zou, Qiwei Wei\",\"doi\":\"10.3109/19401736.2013.865168\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Brachymystax lenok tsinlingensis is an endangered freshwater fish and distributed in mountains steams of Qinling Mountains, China. In this study, a comparative study of the mtDNA control region (D-loop) was performed to analyze its natural population structure and the genetic diversity of 53 individuals from four locations (TB, YX, LX and ZZ populations). Sequence analysis revealed three different domains and two feature sequences of the control region. The estimated haplotype and nucleotide diversity were 9 and 0.0023, respectively. Genetic structure analysis showed a high-level genetic diversity of B. lenok tisnlingensis (h = 0.6060 ± 0.1499). The AMOVA analysis indicated that 26.02% of total variation came from individual populations, and 73.98% from variation within the four geographic populations, which showed low genetic differentiation between the four geographic groups. Test of neutral evolution and mismatch distribution indicated that no historical expansion occurred in these populations. The high genetic diversity and low genetic differentiation would provide new information for conservation and exploitation of this species.</p>\",\"PeriodicalId\":49805,\"journal\":{\"name\":\"Mitochondrial Dna\",\"volume\":\"26 4\",\"pages\":\"532-7\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.3109/19401736.2013.865168\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mitochondrial Dna\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3109/19401736.2013.865168\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2014/1/10 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mitochondrial Dna","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3109/19401736.2013.865168","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2014/1/10 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
Phylogeographic structure of Brachymystax lenok tsinlingensis (Salmonidae) populations in the Qinling Mountains, Shaanxi, based on mtDNA control region.
Brachymystax lenok tsinlingensis is an endangered freshwater fish and distributed in mountains steams of Qinling Mountains, China. In this study, a comparative study of the mtDNA control region (D-loop) was performed to analyze its natural population structure and the genetic diversity of 53 individuals from four locations (TB, YX, LX and ZZ populations). Sequence analysis revealed three different domains and two feature sequences of the control region. The estimated haplotype and nucleotide diversity were 9 and 0.0023, respectively. Genetic structure analysis showed a high-level genetic diversity of B. lenok tisnlingensis (h = 0.6060 ± 0.1499). The AMOVA analysis indicated that 26.02% of total variation came from individual populations, and 73.98% from variation within the four geographic populations, which showed low genetic differentiation between the four geographic groups. Test of neutral evolution and mismatch distribution indicated that no historical expansion occurred in these populations. The high genetic diversity and low genetic differentiation would provide new information for conservation and exploitation of this species.
期刊介绍:
Previously published under the title DNA Sequence (Vols 1-19.3), Mitochondrial DNA accepts original high-quality reports based on mapping, sequencing and analysis of mitochondrial DNA and RNA. Descriptive papers on DNA sequences from mitochondrial genomes, and also analytical papers in the areas of population genetics, medical genetics, phylogenetics and human evolution that use mitochondrial DNA as a source of evidence for studies will be considered for publication. The editorial board will also consider manuscripts that examine population genetic and systematic theory that specifically address the use of mitochondrial DNA sequences.