通过组件分析的差分私有数据发布。

IF 0.9 Q3 COMPUTER SCIENCE, THEORY & METHODS
Transactions on Data Privacy Pub Date : 2013-04-01
Xiaoqian Jiang, Zhanglong Ji, Shuang Wang, Noman Mohammed, Samuel Cheng, Lucila Ohno-Machado
{"title":"通过组件分析的差分私有数据发布。","authors":"Xiaoqian Jiang,&nbsp;Zhanglong Ji,&nbsp;Shuang Wang,&nbsp;Noman Mohammed,&nbsp;Samuel Cheng,&nbsp;Lucila Ohno-Machado","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>A reasonable compromise of privacy and utility exists at an \"appropriate\" resolution of the data. We proposed novel mechanisms to achieve privacy preserving data publishing (PPDP) satisfying ε-<i>differential privacy</i> with improved utility through <i>component analysis</i>. The mechanisms studied in this article are Principal Component Analysis (PCA) and Linear Discriminant Analysis (LDA). The differential PCA-based PPDP serves as a general-purpose data dissemination tool that guarantees better utility (i.e., smaller error) compared to Laplacian and Exponential mechanisms using the same \"privacy budget\". Our second mechanism, the differential LDA-based PPDP, favors data dissemination for classification purposes. Both mechanisms were compared with state-of-the-art methods to show performance differences.</p>","PeriodicalId":44319,"journal":{"name":"Transactions on Data Privacy","volume":"6 1","pages":"19-34"},"PeriodicalIF":0.9000,"publicationDate":"2013-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3883117/pdf/nihms456798.pdf","citationCount":"0","resultStr":"{\"title\":\"Differential-Private Data Publishing Through Component Analysis.\",\"authors\":\"Xiaoqian Jiang,&nbsp;Zhanglong Ji,&nbsp;Shuang Wang,&nbsp;Noman Mohammed,&nbsp;Samuel Cheng,&nbsp;Lucila Ohno-Machado\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>A reasonable compromise of privacy and utility exists at an \\\"appropriate\\\" resolution of the data. We proposed novel mechanisms to achieve privacy preserving data publishing (PPDP) satisfying ε-<i>differential privacy</i> with improved utility through <i>component analysis</i>. The mechanisms studied in this article are Principal Component Analysis (PCA) and Linear Discriminant Analysis (LDA). The differential PCA-based PPDP serves as a general-purpose data dissemination tool that guarantees better utility (i.e., smaller error) compared to Laplacian and Exponential mechanisms using the same \\\"privacy budget\\\". Our second mechanism, the differential LDA-based PPDP, favors data dissemination for classification purposes. Both mechanisms were compared with state-of-the-art methods to show performance differences.</p>\",\"PeriodicalId\":44319,\"journal\":{\"name\":\"Transactions on Data Privacy\",\"volume\":\"6 1\",\"pages\":\"19-34\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2013-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3883117/pdf/nihms456798.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transactions on Data Privacy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions on Data Privacy","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

摘要

在数据的“适当”解决方案中存在隐私和实用程序的合理折衷。通过成分分析,提出了一种新的机制来实现满足ε-差分隐私的隐私保护数据发布(PPDP),并提高了PPDP的效用。本文研究的机制是主成分分析(PCA)和线性判别分析(LDA)。与使用相同“隐私预算”的拉普拉斯和指数机制相比,基于pca的差分PPDP作为通用数据传播工具,保证了更好的效用(即更小的误差)。我们的第二种机制是基于差分lda的PPDP,它有利于数据传播以实现分类目的。我们将这两种机制与最先进的方法进行了比较,以显示性能差异。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Differential-Private Data Publishing Through Component Analysis.

A reasonable compromise of privacy and utility exists at an "appropriate" resolution of the data. We proposed novel mechanisms to achieve privacy preserving data publishing (PPDP) satisfying ε-differential privacy with improved utility through component analysis. The mechanisms studied in this article are Principal Component Analysis (PCA) and Linear Discriminant Analysis (LDA). The differential PCA-based PPDP serves as a general-purpose data dissemination tool that guarantees better utility (i.e., smaller error) compared to Laplacian and Exponential mechanisms using the same "privacy budget". Our second mechanism, the differential LDA-based PPDP, favors data dissemination for classification purposes. Both mechanisms were compared with state-of-the-art methods to show performance differences.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Transactions on Data Privacy
Transactions on Data Privacy COMPUTER SCIENCE, THEORY & METHODS-
CiteScore
3.00
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信