{"title":"有向无环高斯图上的最大似然估计。","authors":"Yiping Yuan, Xiaotong Shen, Wei Pan","doi":"10.1002/sam.11168","DOIUrl":null,"url":null,"abstract":"<p><p>Estimation of multiple directed graphs becomes challenging in the presence of inhomogeneous data, where directed acyclic graphs (DAGs) are used to represent causal relations among random variables. To infer causal relations among variables, we estimate multiple DAGs given a known ordering in Gaussian graphical models. In particular, we propose a constrained maximum likelihood method with nonconvex constraints over elements and element-wise differences of adjacency matrices, for identifying the sparseness structure as well as detecting structural changes over adjacency matrices of the graphs. Computationally, we develop an efficient algorithm based on augmented Lagrange multipliers, the difference convex method, and a novel fast algorithm for solving convex relaxation subproblems. Numerical results suggest that the proposed method performs well against its alternatives for simulated and real data.</p>","PeriodicalId":48684,"journal":{"name":"Statistical Analysis and Data Mining","volume":"5 6","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2012-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3866136/pdf/nihms461070.pdf","citationCount":"0","resultStr":"{\"title\":\"Maximum Likelihood Estimation Over Directed Acyclic Gaussian Graphs.\",\"authors\":\"Yiping Yuan, Xiaotong Shen, Wei Pan\",\"doi\":\"10.1002/sam.11168\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Estimation of multiple directed graphs becomes challenging in the presence of inhomogeneous data, where directed acyclic graphs (DAGs) are used to represent causal relations among random variables. To infer causal relations among variables, we estimate multiple DAGs given a known ordering in Gaussian graphical models. In particular, we propose a constrained maximum likelihood method with nonconvex constraints over elements and element-wise differences of adjacency matrices, for identifying the sparseness structure as well as detecting structural changes over adjacency matrices of the graphs. Computationally, we develop an efficient algorithm based on augmented Lagrange multipliers, the difference convex method, and a novel fast algorithm for solving convex relaxation subproblems. Numerical results suggest that the proposed method performs well against its alternatives for simulated and real data.</p>\",\"PeriodicalId\":48684,\"journal\":{\"name\":\"Statistical Analysis and Data Mining\",\"volume\":\"5 6\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2012-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3866136/pdf/nihms461070.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistical Analysis and Data Mining\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1002/sam.11168\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical Analysis and Data Mining","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1002/sam.11168","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Maximum Likelihood Estimation Over Directed Acyclic Gaussian Graphs.
Estimation of multiple directed graphs becomes challenging in the presence of inhomogeneous data, where directed acyclic graphs (DAGs) are used to represent causal relations among random variables. To infer causal relations among variables, we estimate multiple DAGs given a known ordering in Gaussian graphical models. In particular, we propose a constrained maximum likelihood method with nonconvex constraints over elements and element-wise differences of adjacency matrices, for identifying the sparseness structure as well as detecting structural changes over adjacency matrices of the graphs. Computationally, we develop an efficient algorithm based on augmented Lagrange multipliers, the difference convex method, and a novel fast algorithm for solving convex relaxation subproblems. Numerical results suggest that the proposed method performs well against its alternatives for simulated and real data.
期刊介绍:
Statistical Analysis and Data Mining addresses the broad area of data analysis, including statistical approaches, machine learning, data mining, and applications. Topics include statistical and computational approaches for analyzing massive and complex datasets, novel statistical and/or machine learning methods and theory, and state-of-the-art applications with high impact. Of special interest are articles that describe innovative analytical techniques, and discuss their application to real problems, in such a way that they are accessible and beneficial to domain experts across science, engineering, and commerce.
The focus of the journal is on papers which satisfy one or more of the following criteria:
Solve data analysis problems associated with massive, complex datasets
Develop innovative statistical approaches, machine learning algorithms, or methods integrating ideas across disciplines, e.g., statistics, computer science, electrical engineering, operation research.
Formulate and solve high-impact real-world problems which challenge existing paradigms via new statistical and/or computational models
Provide survey to prominent research topics.