Benedict T. Green, Stephen T. Lee, Kevin D. Welch, Kip E. Panter
{"title":"通过破坏胆碱能神经传递引起发育缺陷的植物生物碱","authors":"Benedict T. Green, Stephen T. Lee, Kevin D. Welch, Kip E. Panter","doi":"10.1002/bdrc.21049","DOIUrl":null,"url":null,"abstract":"<p>The exposure of a developing embryo or fetus to alkaloids from plants, plant products, or plant extracts has the potential to cause developmental defects in humans and animals. These defects may have multiple causes, but those induced by piperidine and quinolizidine alkaloids arise from the inhibition of fetal movement and are generally referred to as multiple congenital contracture-type deformities. These skeletal deformities include arthrogyrposis, kyposis, lordosis, scoliosis, and torticollis, associated secondary defects, and cleft palate. Structure-function studies have shown that plant alkaloids with a piperidine ring and a minimum of a three-carbon side-chain α to the piperidine nitrogen are teratogenic. Further studies determined that an unsaturation in the piperidine ring, as occurs in gamma coniceine, or anabaseine, enhances the toxic and teratogenic activity, whereas the <i>N</i>-methyl derivatives are less potent. Enantiomers of the piperidine teratogens, coniine, ammodendrine, and anabasine, also exhibit differences in biological activity, as shown in cell culture studies, suggesting variability in the activity due to the optical rotation at the chiral center of these stereoisomers. In this article, we review the molecular mechanism at the nicotinic pharmacophore and biological activities, as it is currently understood, of a group of piperidine and quinolizidine alkaloid teratogens that impart a series of flexure-type skeletal defects and cleft palate in animals. Birth Defects Research (Part C) 99:235–246, 2013. Published 2013 Wiley Priodicals, Inc.</p>","PeriodicalId":55352,"journal":{"name":"Birth Defects Research Part C-Embryo Today-Reviews","volume":"99 4","pages":"235-246"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/bdrc.21049","citationCount":"26","resultStr":"{\"title\":\"Plant alkaloids that cause developmental defects through the disruption of cholinergic neurotransmission\",\"authors\":\"Benedict T. Green, Stephen T. Lee, Kevin D. Welch, Kip E. Panter\",\"doi\":\"10.1002/bdrc.21049\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The exposure of a developing embryo or fetus to alkaloids from plants, plant products, or plant extracts has the potential to cause developmental defects in humans and animals. These defects may have multiple causes, but those induced by piperidine and quinolizidine alkaloids arise from the inhibition of fetal movement and are generally referred to as multiple congenital contracture-type deformities. These skeletal deformities include arthrogyrposis, kyposis, lordosis, scoliosis, and torticollis, associated secondary defects, and cleft palate. Structure-function studies have shown that plant alkaloids with a piperidine ring and a minimum of a three-carbon side-chain α to the piperidine nitrogen are teratogenic. Further studies determined that an unsaturation in the piperidine ring, as occurs in gamma coniceine, or anabaseine, enhances the toxic and teratogenic activity, whereas the <i>N</i>-methyl derivatives are less potent. Enantiomers of the piperidine teratogens, coniine, ammodendrine, and anabasine, also exhibit differences in biological activity, as shown in cell culture studies, suggesting variability in the activity due to the optical rotation at the chiral center of these stereoisomers. In this article, we review the molecular mechanism at the nicotinic pharmacophore and biological activities, as it is currently understood, of a group of piperidine and quinolizidine alkaloid teratogens that impart a series of flexure-type skeletal defects and cleft palate in animals. Birth Defects Research (Part C) 99:235–246, 2013. Published 2013 Wiley Priodicals, Inc.</p>\",\"PeriodicalId\":55352,\"journal\":{\"name\":\"Birth Defects Research Part C-Embryo Today-Reviews\",\"volume\":\"99 4\",\"pages\":\"235-246\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-12-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1002/bdrc.21049\",\"citationCount\":\"26\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Birth Defects Research Part C-Embryo Today-Reviews\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/bdrc.21049\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Birth Defects Research Part C-Embryo Today-Reviews","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/bdrc.21049","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q","JCRName":"Medicine","Score":null,"Total":0}
Plant alkaloids that cause developmental defects through the disruption of cholinergic neurotransmission
The exposure of a developing embryo or fetus to alkaloids from plants, plant products, or plant extracts has the potential to cause developmental defects in humans and animals. These defects may have multiple causes, but those induced by piperidine and quinolizidine alkaloids arise from the inhibition of fetal movement and are generally referred to as multiple congenital contracture-type deformities. These skeletal deformities include arthrogyrposis, kyposis, lordosis, scoliosis, and torticollis, associated secondary defects, and cleft palate. Structure-function studies have shown that plant alkaloids with a piperidine ring and a minimum of a three-carbon side-chain α to the piperidine nitrogen are teratogenic. Further studies determined that an unsaturation in the piperidine ring, as occurs in gamma coniceine, or anabaseine, enhances the toxic and teratogenic activity, whereas the N-methyl derivatives are less potent. Enantiomers of the piperidine teratogens, coniine, ammodendrine, and anabasine, also exhibit differences in biological activity, as shown in cell culture studies, suggesting variability in the activity due to the optical rotation at the chiral center of these stereoisomers. In this article, we review the molecular mechanism at the nicotinic pharmacophore and biological activities, as it is currently understood, of a group of piperidine and quinolizidine alkaloid teratogens that impart a series of flexure-type skeletal defects and cleft palate in animals. Birth Defects Research (Part C) 99:235–246, 2013. Published 2013 Wiley Priodicals, Inc.
期刊介绍:
John Wiley & Sons and the Teratology Society are please to announce a new journal, Birth Defects Research . This new journal is a comprehensive resource of original research and reviews in fields related to embryo-fetal development and reproduction. Birth Defects Research draws from the expertise and reputation of two current Wiley journals, and introduces a new forum for reviews in developmental biology and embryology. Part C: Embryo Today: Reviews