使用多核平台的基于地标图像注册的并行点匹配算法

Lin Yang, Leiguang Gong, Hong Zhang, John L Nosher, David J Foran
{"title":"使用多核平台的基于地标图像注册的并行点匹配算法","authors":"Lin Yang, Leiguang Gong, Hong Zhang, John L Nosher, David J Foran","doi":"10.1007/978-3-642-03869-3_86","DOIUrl":null,"url":null,"abstract":"<p><p>Point matching is crucial for many computer vision applications. Establishing the correspondence between a large number of data points is a computationally intensive process. Some point matching related applications, such as medical image registration, require real time or near real time performance if applied to critical clinical applications like image assisted surgery. In this paper, we report a new multicore platform based parallel algorithm for fast point matching in the context of landmark based medical image registration. We introduced a non-regular data partition algorithm which utilizes the <i>K</i>-means clustering algorithm to group the landmarks based on the number of available processing cores, which optimize the memory usage and data transfer. We have tested our method using the IBM Cell Broadband Engine (Cell/B.E.) platform. The results demonstrated a significant speed up over its sequential implementation. The proposed data partition and parallelization algorithm, though tested only on one multicore platform, is generic by its design. Therefore the parallel algorithm can be extended to other computing platforms, as well as other point matching related applications.</p>","PeriodicalId":89919,"journal":{"name":"EURO-PAR '... : ... International EURO-PAR Conference : proceedings. International EURO-PAR Conference","volume":"5704 ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2009-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3845531/pdf/nihms-472638.pdf","citationCount":"0","resultStr":"{\"title\":\"A Parallel Point Matching Algorithm for Landmark Based Image Registration Using Multicore Platform.\",\"authors\":\"Lin Yang, Leiguang Gong, Hong Zhang, John L Nosher, David J Foran\",\"doi\":\"10.1007/978-3-642-03869-3_86\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Point matching is crucial for many computer vision applications. Establishing the correspondence between a large number of data points is a computationally intensive process. Some point matching related applications, such as medical image registration, require real time or near real time performance if applied to critical clinical applications like image assisted surgery. In this paper, we report a new multicore platform based parallel algorithm for fast point matching in the context of landmark based medical image registration. We introduced a non-regular data partition algorithm which utilizes the <i>K</i>-means clustering algorithm to group the landmarks based on the number of available processing cores, which optimize the memory usage and data transfer. We have tested our method using the IBM Cell Broadband Engine (Cell/B.E.) platform. The results demonstrated a significant speed up over its sequential implementation. The proposed data partition and parallelization algorithm, though tested only on one multicore platform, is generic by its design. Therefore the parallel algorithm can be extended to other computing platforms, as well as other point matching related applications.</p>\",\"PeriodicalId\":89919,\"journal\":{\"name\":\"EURO-PAR '... : ... International EURO-PAR Conference : proceedings. International EURO-PAR Conference\",\"volume\":\"5704 \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3845531/pdf/nihms-472638.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EURO-PAR '... : ... International EURO-PAR Conference : proceedings. International EURO-PAR Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/978-3-642-03869-3_86\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EURO-PAR '... : ... International EURO-PAR Conference : proceedings. International EURO-PAR Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/978-3-642-03869-3_86","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

点匹配对许多计算机视觉应用至关重要。建立大量数据点之间的对应关系是一个计算密集型过程。一些与点匹配相关的应用,如医学图像配准,如果应用于图像辅助手术等关键临床应用,则需要实时或接近实时的性能。在本文中,我们报告了一种新的基于多核平台的并行算法,用于基于地标的医学图像配准中的快速点匹配。我们引入了一种非规则数据分区算法,该算法利用 K-means 聚类算法,根据可用处理核心的数量对地标进行分组,从而优化内存使用和数据传输。我们使用 IBM Cell 宽带引擎(Cell/B.E.)平台对我们的方法进行了测试。结果表明,与顺序执行相比,我们的方法大大提高了速度。所提出的数据分区和并行化算法虽然只在一个多核平台上进行了测试,但其设计具有通用性。因此,该并行算法可扩展到其他计算平台以及其他点匹配相关应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

A Parallel Point Matching Algorithm for Landmark Based Image Registration Using Multicore Platform.

A Parallel Point Matching Algorithm for Landmark Based Image Registration Using Multicore Platform.

A Parallel Point Matching Algorithm for Landmark Based Image Registration Using Multicore Platform.

A Parallel Point Matching Algorithm for Landmark Based Image Registration Using Multicore Platform.

Point matching is crucial for many computer vision applications. Establishing the correspondence between a large number of data points is a computationally intensive process. Some point matching related applications, such as medical image registration, require real time or near real time performance if applied to critical clinical applications like image assisted surgery. In this paper, we report a new multicore platform based parallel algorithm for fast point matching in the context of landmark based medical image registration. We introduced a non-regular data partition algorithm which utilizes the K-means clustering algorithm to group the landmarks based on the number of available processing cores, which optimize the memory usage and data transfer. We have tested our method using the IBM Cell Broadband Engine (Cell/B.E.) platform. The results demonstrated a significant speed up over its sequential implementation. The proposed data partition and parallelization algorithm, though tested only on one multicore platform, is generic by its design. Therefore the parallel algorithm can be extended to other computing platforms, as well as other point matching related applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信