{"title":"基于长链非编码rna的生殖细胞分化染色质调控:酵母视角。","authors":"Edwige Hiriart, André Verdel","doi":"10.1007/s10577-013-9393-5","DOIUrl":null,"url":null,"abstract":"<p><p>Germ cell differentiation, the cellular process by which a diploid progenitor cell produces by meiotic divisions haploid cells, is conserved from the unicellular yeasts to mammals. Over the recent years, yeast germ cell differentiation process has proven to be a powerful biological system to identify and study several long noncoding RNAs (lncRNAs) that play a central role in regulating cellular differentiation by acting directly on chromatin. Remarkably, in the well-studied budding yeast Saccharomyces cerevisiae and fission yeast Schizosaccharomyces pombe, the lncRNA-based chromatin regulations of germ cell differentiation are quite different. In this review, we present an overview of these regulations by focusing on the mechanisms and their respective functions both in S. cerevisiae and in S. pombe. Part of these lncRNA-based chromatin regulations may be conserved in other eukaryotes and play critical roles either in the context of germ cell differentiation or, more generally, in the development of multicellular organisms.</p>","PeriodicalId":347802,"journal":{"name":"Chromosome research : an international journal on the molecular, supramolecular and evolutionary aspects of chromosome biology","volume":" ","pages":"653-63"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s10577-013-9393-5","citationCount":"22","resultStr":"{\"title\":\"Long noncoding RNA-based chromatin control of germ cell differentiation: a yeast perspective.\",\"authors\":\"Edwige Hiriart, André Verdel\",\"doi\":\"10.1007/s10577-013-9393-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Germ cell differentiation, the cellular process by which a diploid progenitor cell produces by meiotic divisions haploid cells, is conserved from the unicellular yeasts to mammals. Over the recent years, yeast germ cell differentiation process has proven to be a powerful biological system to identify and study several long noncoding RNAs (lncRNAs) that play a central role in regulating cellular differentiation by acting directly on chromatin. Remarkably, in the well-studied budding yeast Saccharomyces cerevisiae and fission yeast Schizosaccharomyces pombe, the lncRNA-based chromatin regulations of germ cell differentiation are quite different. In this review, we present an overview of these regulations by focusing on the mechanisms and their respective functions both in S. cerevisiae and in S. pombe. Part of these lncRNA-based chromatin regulations may be conserved in other eukaryotes and play critical roles either in the context of germ cell differentiation or, more generally, in the development of multicellular organisms.</p>\",\"PeriodicalId\":347802,\"journal\":{\"name\":\"Chromosome research : an international journal on the molecular, supramolecular and evolutionary aspects of chromosome biology\",\"volume\":\" \",\"pages\":\"653-63\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/s10577-013-9393-5\",\"citationCount\":\"22\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chromosome research : an international journal on the molecular, supramolecular and evolutionary aspects of chromosome biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s10577-013-9393-5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chromosome research : an international journal on the molecular, supramolecular and evolutionary aspects of chromosome biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s10577-013-9393-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Long noncoding RNA-based chromatin control of germ cell differentiation: a yeast perspective.
Germ cell differentiation, the cellular process by which a diploid progenitor cell produces by meiotic divisions haploid cells, is conserved from the unicellular yeasts to mammals. Over the recent years, yeast germ cell differentiation process has proven to be a powerful biological system to identify and study several long noncoding RNAs (lncRNAs) that play a central role in regulating cellular differentiation by acting directly on chromatin. Remarkably, in the well-studied budding yeast Saccharomyces cerevisiae and fission yeast Schizosaccharomyces pombe, the lncRNA-based chromatin regulations of germ cell differentiation are quite different. In this review, we present an overview of these regulations by focusing on the mechanisms and their respective functions both in S. cerevisiae and in S. pombe. Part of these lncRNA-based chromatin regulations may be conserved in other eukaryotes and play critical roles either in the context of germ cell differentiation or, more generally, in the development of multicellular organisms.