基因表达分析和尿液生物标志物分析揭示了慢性蛋白尿(阿霉素肾病)啮齿动物模型中小管间质损伤途径的激活。

Nephron Experimental Nephrology Pub Date : 2013-01-01 Epub Date: 2013-11-12 DOI:10.1159/000355542
Rachel Cianciolo, Lawrence Yoon, David Krull, Alan Stokes, Alex Rodriguez, Holly Jordan, David Cooper, James G Falls, John Cullen, Carie Kimbrough, Brian Berridge
{"title":"基因表达分析和尿液生物标志物分析揭示了慢性蛋白尿(阿霉素肾病)啮齿动物模型中小管间质损伤途径的激活。","authors":"Rachel Cianciolo,&nbsp;Lawrence Yoon,&nbsp;David Krull,&nbsp;Alan Stokes,&nbsp;Alex Rodriguez,&nbsp;Holly Jordan,&nbsp;David Cooper,&nbsp;James G Falls,&nbsp;John Cullen,&nbsp;Carie Kimbrough,&nbsp;Brian Berridge","doi":"10.1159/000355542","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Tubular atrophy and interstitial fibrosis are well-recognized sequelae of chronic proteinuria; however, little is known regarding the molecular pathways activated within tubulointerstitium in chronic proteinuric nephropathies.</p><p><strong>Methods: </strong>To investigate the molecular mechanisms of proteinuria-associated tubulointerstitial (TI) disease, doxorubicin nephropathy was induced in rats. Progression of disease was monitored with weekly urinary biomarker assays. Because histopathology revealed multifocal TI injury, immunodirected laser capture microdissection was used to identify and isolate injured proximal tubules, as indicated by kidney injury molecule-1 immunolabeling. Adjacent interstitial cells were harvested separately. Gene expression microarray, manual annotation of gene lists, and Gene Set Enrichment Analysis were performed. A subset of the regulated transcripts was validated by quantitative PCR and immunohistochemistry.</p><p><strong>Results: </strong>Severe proteinuria preceded tubular injury biomarkers by 1 week. Histology revealed multifocal, mild TI damage at 3 weeks, which progressed in severity at 5 weeks. Affymetrix microarray analysis revealed tissue-specific regulation of gene expression. Manual annotation of gene lists, gene set enrichment analysis, and urinary biomarker assays revealed similarities to pathways activated in direct TI injuries. This suggests commonalities amongst the molecular mechanisms of TI injury secondary to proteinuria, ischemia-reperfusion, and nephrotoxicity. © 2013 S. Karger AG, Basel.</p>","PeriodicalId":18993,"journal":{"name":"Nephron Experimental Nephrology","volume":"124 1-2","pages":"1-10"},"PeriodicalIF":0.0000,"publicationDate":"2013-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1159/000355542","citationCount":"11","resultStr":"{\"title\":\"Gene expression analysis and urinary biomarker assays reveal activation of tubulointerstitial injury pathways in a rodent model of chronic proteinuria (Doxorubicin nephropathy).\",\"authors\":\"Rachel Cianciolo,&nbsp;Lawrence Yoon,&nbsp;David Krull,&nbsp;Alan Stokes,&nbsp;Alex Rodriguez,&nbsp;Holly Jordan,&nbsp;David Cooper,&nbsp;James G Falls,&nbsp;John Cullen,&nbsp;Carie Kimbrough,&nbsp;Brian Berridge\",\"doi\":\"10.1159/000355542\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Tubular atrophy and interstitial fibrosis are well-recognized sequelae of chronic proteinuria; however, little is known regarding the molecular pathways activated within tubulointerstitium in chronic proteinuric nephropathies.</p><p><strong>Methods: </strong>To investigate the molecular mechanisms of proteinuria-associated tubulointerstitial (TI) disease, doxorubicin nephropathy was induced in rats. Progression of disease was monitored with weekly urinary biomarker assays. Because histopathology revealed multifocal TI injury, immunodirected laser capture microdissection was used to identify and isolate injured proximal tubules, as indicated by kidney injury molecule-1 immunolabeling. Adjacent interstitial cells were harvested separately. Gene expression microarray, manual annotation of gene lists, and Gene Set Enrichment Analysis were performed. A subset of the regulated transcripts was validated by quantitative PCR and immunohistochemistry.</p><p><strong>Results: </strong>Severe proteinuria preceded tubular injury biomarkers by 1 week. Histology revealed multifocal, mild TI damage at 3 weeks, which progressed in severity at 5 weeks. Affymetrix microarray analysis revealed tissue-specific regulation of gene expression. Manual annotation of gene lists, gene set enrichment analysis, and urinary biomarker assays revealed similarities to pathways activated in direct TI injuries. This suggests commonalities amongst the molecular mechanisms of TI injury secondary to proteinuria, ischemia-reperfusion, and nephrotoxicity. © 2013 S. Karger AG, Basel.</p>\",\"PeriodicalId\":18993,\"journal\":{\"name\":\"Nephron Experimental Nephrology\",\"volume\":\"124 1-2\",\"pages\":\"1-10\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1159/000355542\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nephron Experimental Nephrology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1159/000355542\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2013/11/12 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nephron Experimental Nephrology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1159/000355542","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2013/11/12 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

背景:小管萎缩和间质纤维化是公认的慢性蛋白尿的后遗症;然而,对于慢性蛋白尿肾病中小管间质内激活的分子途径知之甚少。方法:采用多柔比星肾病大鼠,探讨蛋白尿相关小管间质病的分子机制。通过每周尿液生物标志物检测监测疾病进展。由于组织病理学显示多灶性TI损伤,因此采用免疫定向激光捕获显微解剖来识别和分离损伤的近端小管,如肾损伤分子-1免疫标记所示。相邻间质细胞分别收获。基因表达微阵列,手工标注基因列表,基因集富集分析。通过定量PCR和免疫组织化学验证了一部分调节转录本。结果:严重蛋白尿先于小管损伤生物标志物1周。组织学显示多灶性,3周时轻度TI损伤,5周时严重恶化。Affymetrix微阵列分析揭示了基因表达的组织特异性调控。基因列表的手工注释、基因集富集分析和尿液生物标志物分析显示了与直接TI损伤激活的途径的相似性。这表明继发于蛋白尿、缺血再灌注和肾毒性的TI损伤的分子机制具有共性。©2013 S. Karger AG,巴塞尔。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Gene expression analysis and urinary biomarker assays reveal activation of tubulointerstitial injury pathways in a rodent model of chronic proteinuria (Doxorubicin nephropathy).

Background: Tubular atrophy and interstitial fibrosis are well-recognized sequelae of chronic proteinuria; however, little is known regarding the molecular pathways activated within tubulointerstitium in chronic proteinuric nephropathies.

Methods: To investigate the molecular mechanisms of proteinuria-associated tubulointerstitial (TI) disease, doxorubicin nephropathy was induced in rats. Progression of disease was monitored with weekly urinary biomarker assays. Because histopathology revealed multifocal TI injury, immunodirected laser capture microdissection was used to identify and isolate injured proximal tubules, as indicated by kidney injury molecule-1 immunolabeling. Adjacent interstitial cells were harvested separately. Gene expression microarray, manual annotation of gene lists, and Gene Set Enrichment Analysis were performed. A subset of the regulated transcripts was validated by quantitative PCR and immunohistochemistry.

Results: Severe proteinuria preceded tubular injury biomarkers by 1 week. Histology revealed multifocal, mild TI damage at 3 weeks, which progressed in severity at 5 weeks. Affymetrix microarray analysis revealed tissue-specific regulation of gene expression. Manual annotation of gene lists, gene set enrichment analysis, and urinary biomarker assays revealed similarities to pathways activated in direct TI injuries. This suggests commonalities amongst the molecular mechanisms of TI injury secondary to proteinuria, ischemia-reperfusion, and nephrotoxicity. © 2013 S. Karger AG, Basel.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nephron Experimental Nephrology
Nephron Experimental Nephrology 医学-泌尿学与肾脏学
自引率
0.00%
发文量
0
审稿时长
>12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信