Diana A Tafoya, Zacariah L Hildenbrand, Nadia Herrera, Sudheer K Molugu, Vadim V Mesyanzhinov, Konstantin A Miroshnikov, Ricardo A Bernal
{"title":"噬菌体EL编码的溶解酶的酶学特性。","authors":"Diana A Tafoya, Zacariah L Hildenbrand, Nadia Herrera, Sudheer K Molugu, Vadim V Mesyanzhinov, Konstantin A Miroshnikov, Ricardo A Bernal","doi":"10.4161/bact.25449","DOIUrl":null,"url":null,"abstract":"<p><p>The bacteriophage EL is a virus that specifically attacks the human pathogen <i>Pseudomonas aeruginosa</i>. This phage carries a large genome that encodes for its own chaperonin which presumably facilitates the proper folding of phage proteins independently of the host chaperonin system. EL also encodes a lysin enzyme, a critical component of the lytic cycle that is responsible for digesting the peptidoglycan layer of the host cell wall. Previously, this lysin was believed to be a substrate of the chaperonin encoded by phage EL. In order to characterize the activity of the EL lysin, and to determine whether lysin activity is contingent on chaperonin-mediated folding, a series of peptidoglycan hydrolysis activity assays were performed. Results indicate that the EL-encoded lysin has similar enzymatic activity to that of the <i>Gallus gallus lysozyme</i> and that the EL lysin folds into a functional enzyme in the absence of phage chaperonin and should not be considered a substrate.</p>","PeriodicalId":8686,"journal":{"name":"Bacteriophage","volume":"3 2","pages":"e25449"},"PeriodicalIF":0.0000,"publicationDate":"2013-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.4161/bact.25449","citationCount":"4","resultStr":"{\"title\":\"Enzymatic characterization of a lysin encoded by bacteriophage EL.\",\"authors\":\"Diana A Tafoya, Zacariah L Hildenbrand, Nadia Herrera, Sudheer K Molugu, Vadim V Mesyanzhinov, Konstantin A Miroshnikov, Ricardo A Bernal\",\"doi\":\"10.4161/bact.25449\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The bacteriophage EL is a virus that specifically attacks the human pathogen <i>Pseudomonas aeruginosa</i>. This phage carries a large genome that encodes for its own chaperonin which presumably facilitates the proper folding of phage proteins independently of the host chaperonin system. EL also encodes a lysin enzyme, a critical component of the lytic cycle that is responsible for digesting the peptidoglycan layer of the host cell wall. Previously, this lysin was believed to be a substrate of the chaperonin encoded by phage EL. In order to characterize the activity of the EL lysin, and to determine whether lysin activity is contingent on chaperonin-mediated folding, a series of peptidoglycan hydrolysis activity assays were performed. Results indicate that the EL-encoded lysin has similar enzymatic activity to that of the <i>Gallus gallus lysozyme</i> and that the EL lysin folds into a functional enzyme in the absence of phage chaperonin and should not be considered a substrate.</p>\",\"PeriodicalId\":8686,\"journal\":{\"name\":\"Bacteriophage\",\"volume\":\"3 2\",\"pages\":\"e25449\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.4161/bact.25449\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bacteriophage\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4161/bact.25449\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bacteriophage","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4161/bact.25449","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Enzymatic characterization of a lysin encoded by bacteriophage EL.
The bacteriophage EL is a virus that specifically attacks the human pathogen Pseudomonas aeruginosa. This phage carries a large genome that encodes for its own chaperonin which presumably facilitates the proper folding of phage proteins independently of the host chaperonin system. EL also encodes a lysin enzyme, a critical component of the lytic cycle that is responsible for digesting the peptidoglycan layer of the host cell wall. Previously, this lysin was believed to be a substrate of the chaperonin encoded by phage EL. In order to characterize the activity of the EL lysin, and to determine whether lysin activity is contingent on chaperonin-mediated folding, a series of peptidoglycan hydrolysis activity assays were performed. Results indicate that the EL-encoded lysin has similar enzymatic activity to that of the Gallus gallus lysozyme and that the EL lysin folds into a functional enzyme in the absence of phage chaperonin and should not be considered a substrate.