推文中的知识发现方法。

Sunmoo Yoon, Suzanne Bakken
{"title":"推文中的知识发现方法。","authors":"Sunmoo Yoon,&nbsp;Suzanne Bakken","doi":"","DOIUrl":null,"url":null,"abstract":"<p><strong>The purposes of this methodological paper are: </strong>1) to describe web mining methods for knowledge discovery in Tweets, and 2) to illustrate application of the methods using the topic of physical activity. Methods described include: 1) structure mining to discover structures (macro-, meso-, and micro-level) of Tweet networks using social network analysis, and 2) content mining to discover Tweet contents using n-gram based text analysis and sentiment analysis. Specific web mining tools for each step of the web mining process (e.g., NodeXL, ORA, Pajek, Weka) are detailed. Our novel application of web mining methods was useful in understanding multiple dimensions of physical activity. The methods that we applied may be useful to others wishing to mine social media for health-related purposes.</p>","PeriodicalId":90025,"journal":{"name":"NI 2012 : 11th International Congress on Nursing Informatics, June 23-27, 2012, Montreal, Canada. International Congress in Nursing Informatics (11th : 2012 : Montreal, Quebec)","volume":"2012 ","pages":"463"},"PeriodicalIF":0.0000,"publicationDate":"2012-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3799133/pdf/amia_2012_ni_463.pdf","citationCount":"0","resultStr":"{\"title\":\"Methods of knowledge discovery in tweets.\",\"authors\":\"Sunmoo Yoon,&nbsp;Suzanne Bakken\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>The purposes of this methodological paper are: </strong>1) to describe web mining methods for knowledge discovery in Tweets, and 2) to illustrate application of the methods using the topic of physical activity. Methods described include: 1) structure mining to discover structures (macro-, meso-, and micro-level) of Tweet networks using social network analysis, and 2) content mining to discover Tweet contents using n-gram based text analysis and sentiment analysis. Specific web mining tools for each step of the web mining process (e.g., NodeXL, ORA, Pajek, Weka) are detailed. Our novel application of web mining methods was useful in understanding multiple dimensions of physical activity. The methods that we applied may be useful to others wishing to mine social media for health-related purposes.</p>\",\"PeriodicalId\":90025,\"journal\":{\"name\":\"NI 2012 : 11th International Congress on Nursing Informatics, June 23-27, 2012, Montreal, Canada. International Congress in Nursing Informatics (11th : 2012 : Montreal, Quebec)\",\"volume\":\"2012 \",\"pages\":\"463\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-06-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3799133/pdf/amia_2012_ni_463.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"NI 2012 : 11th International Congress on Nursing Informatics, June 23-27, 2012, Montreal, Canada. International Congress in Nursing Informatics (11th : 2012 : Montreal, Quebec)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2012/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"NI 2012 : 11th International Congress on Nursing Informatics, June 23-27, 2012, Montreal, Canada. International Congress in Nursing Informatics (11th : 2012 : Montreal, Quebec)","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2012/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

这篇方法学论文的目的是:1)描述twitter中知识发现的网络挖掘方法,以及2)说明使用体育活动主题的方法的应用。所描述的方法包括:1)结构挖掘,利用社会网络分析发现Tweet网络的结构(宏观、中观和微观层面);2)内容挖掘,利用基于n-gram的文本分析和情感分析发现Tweet内容。详细介绍了web挖掘过程中每个步骤的特定web挖掘工具(如NodeXL、ORA、Pajek、Weka)。我们对web挖掘方法的新应用有助于理解身体活动的多个维度。我们采用的方法可能对其他希望挖掘社交媒体以实现健康相关目的的人有用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Methods of knowledge discovery in tweets.

The purposes of this methodological paper are: 1) to describe web mining methods for knowledge discovery in Tweets, and 2) to illustrate application of the methods using the topic of physical activity. Methods described include: 1) structure mining to discover structures (macro-, meso-, and micro-level) of Tweet networks using social network analysis, and 2) content mining to discover Tweet contents using n-gram based text analysis and sentiment analysis. Specific web mining tools for each step of the web mining process (e.g., NodeXL, ORA, Pajek, Weka) are detailed. Our novel application of web mining methods was useful in understanding multiple dimensions of physical activity. The methods that we applied may be useful to others wishing to mine social media for health-related purposes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信