Rajni M Bhardwaj, Blair F Johnston, Iain D H Oswald, Alastair J Florence
{"title":"琥珀酸洛沙平及其一水化合物的互补实验与计算研究。","authors":"Rajni M Bhardwaj, Blair F Johnston, Iain D H Oswald, Alastair J Florence","doi":"10.1107/S0108270113029363","DOIUrl":null,"url":null,"abstract":"<p><p>The crystal structures of loxapine succinate [systematic name: 4-(2-chlorodibenzo[b,f][1,4]oxazepin-11-yl)-1-methylpiperazin-1-ium 3-carboxypropanoate], C18H19ClN3O(+)·C4H5O4(-), and loxapine succinate monohydrate {systematic name: bis[4-(2-chlorodibenzo[b,f][1,4]oxazepin-11-yl)-1-methylpiperazin-1-ium] succinate succinic acid dihydrate}, 2C18H19ClN3O(+)·C4H4O4(2-)·C4H6O4·2H2O, have been determined using X-ray powder diffraction and single-crystal X-ray diffraction, respectively. Fixed cell geometry optimization calculations using density functional theory confirmed that the global optimum powder diffraction derived structure also matches an energy minimum structure. The energy calculations proved to be an effective tool in locating the positions of the H atoms reliably and verifying the salt configuration of the structure determined from powder data. Crystal packing analysis of these structures revealed that the loxapine succinate structure is based on chains of protonated loxapine molecules while the monohydrate contains dispersion stabilized centrosymmetric dimers. Incorporation of water molecules within the crystal lattice significantly alters the molecular packing and protonation state of the succinic acid. </p>","PeriodicalId":7368,"journal":{"name":"Acta crystallographica. Section C, Crystal structure communications","volume":"69 Pt 11","pages":"1273-8"},"PeriodicalIF":0.8000,"publicationDate":"2013-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1107/S0108270113029363","citationCount":"6","resultStr":"{\"title\":\"A complementary experimental and computational study of loxapine succinate and its monohydrate.\",\"authors\":\"Rajni M Bhardwaj, Blair F Johnston, Iain D H Oswald, Alastair J Florence\",\"doi\":\"10.1107/S0108270113029363\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The crystal structures of loxapine succinate [systematic name: 4-(2-chlorodibenzo[b,f][1,4]oxazepin-11-yl)-1-methylpiperazin-1-ium 3-carboxypropanoate], C18H19ClN3O(+)·C4H5O4(-), and loxapine succinate monohydrate {systematic name: bis[4-(2-chlorodibenzo[b,f][1,4]oxazepin-11-yl)-1-methylpiperazin-1-ium] succinate succinic acid dihydrate}, 2C18H19ClN3O(+)·C4H4O4(2-)·C4H6O4·2H2O, have been determined using X-ray powder diffraction and single-crystal X-ray diffraction, respectively. Fixed cell geometry optimization calculations using density functional theory confirmed that the global optimum powder diffraction derived structure also matches an energy minimum structure. The energy calculations proved to be an effective tool in locating the positions of the H atoms reliably and verifying the salt configuration of the structure determined from powder data. Crystal packing analysis of these structures revealed that the loxapine succinate structure is based on chains of protonated loxapine molecules while the monohydrate contains dispersion stabilized centrosymmetric dimers. Incorporation of water molecules within the crystal lattice significantly alters the molecular packing and protonation state of the succinic acid. </p>\",\"PeriodicalId\":7368,\"journal\":{\"name\":\"Acta crystallographica. Section C, Crystal structure communications\",\"volume\":\"69 Pt 11\",\"pages\":\"1273-8\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2013-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1107/S0108270113029363\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta crystallographica. Section C, Crystal structure communications\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1107/S0108270113029363\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2013/10/31 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta crystallographica. Section C, Crystal structure communications","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1107/S0108270113029363","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2013/10/31 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
A complementary experimental and computational study of loxapine succinate and its monohydrate.
The crystal structures of loxapine succinate [systematic name: 4-(2-chlorodibenzo[b,f][1,4]oxazepin-11-yl)-1-methylpiperazin-1-ium 3-carboxypropanoate], C18H19ClN3O(+)·C4H5O4(-), and loxapine succinate monohydrate {systematic name: bis[4-(2-chlorodibenzo[b,f][1,4]oxazepin-11-yl)-1-methylpiperazin-1-ium] succinate succinic acid dihydrate}, 2C18H19ClN3O(+)·C4H4O4(2-)·C4H6O4·2H2O, have been determined using X-ray powder diffraction and single-crystal X-ray diffraction, respectively. Fixed cell geometry optimization calculations using density functional theory confirmed that the global optimum powder diffraction derived structure also matches an energy minimum structure. The energy calculations proved to be an effective tool in locating the positions of the H atoms reliably and verifying the salt configuration of the structure determined from powder data. Crystal packing analysis of these structures revealed that the loxapine succinate structure is based on chains of protonated loxapine molecules while the monohydrate contains dispersion stabilized centrosymmetric dimers. Incorporation of water molecules within the crystal lattice significantly alters the molecular packing and protonation state of the succinic acid.
期刊介绍:
Acta Crystallographica Section C: Structural Chemistry is continuing its transition to a journal that publishes exciting science with structural content, in particular, important results relating to the chemical sciences. Section C is the journal of choice for the rapid publication of articles that highlight interesting research facilitated by the determination, calculation or analysis of structures of any type, other than macromolecular structures. Articles that emphasize the science and the outcomes that were enabled by the study are particularly welcomed. Authors are encouraged to include mainstream science in their papers, thereby producing manuscripts that are substantial scientific well-rounded contributions that appeal to a broad community of readers and increase the profile of the authors.