{"title":"黄海和东海梭子蟹种群遗传结构及幼虫传播策略","authors":"Zhiqiang Han, Wei Zheng, Guobao Chen, Bonian Shui, Shufang Liu, Zhimeng Zhuang","doi":"10.3109/19401736.2013.840592","DOIUrl":null,"url":null,"abstract":"<p><p>Larval dispersal may have an important effect on genetic structure of benthic species. However, different species may choose different larval dispersal strategy. To examine the population genetic structure and larval dispersal strategy of portunid crab Charybdis bimaculata, a 658 base pair (bp) fragment of mtDNA COI gene was sequenced in this species. In total, 67 individuals were collected from 5 locations in Yellow Sea and East China, and 24 haplotypes were obtained. Mean haplotype diversity and nucleotide diversity for the five populations ranged from 0.2000 ± 0.1541 (Zhoushan) to 0.8333 ± 0.1265 (Nanji island), and from 0.0003 ± 0.0005 (Zhoushan) to 0.0026 ± 0.0019 (Nanji island). Analysis of molecular variance and pairwise FST revealed no significant differentiation between the Yellow Sea and the East China Sea in C. bimaculata, supporting high larval dispersal ability in this species, rejecting larval retention. Mismatch distribution revealed that C. bimaculata had undergone population expansion. Larval drift in the ocean currents, and recent range expansion could be the reasons for little genetic structure in the studied area. </p>","PeriodicalId":49805,"journal":{"name":"Mitochondrial Dna","volume":"26 3","pages":"402-8"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.3109/19401736.2013.840592","citationCount":"6","resultStr":"{\"title\":\"Population genetic structure and larval dispersal strategy of portunid crab Charybdis bimaculata in Yellow sea and East China sea.\",\"authors\":\"Zhiqiang Han, Wei Zheng, Guobao Chen, Bonian Shui, Shufang Liu, Zhimeng Zhuang\",\"doi\":\"10.3109/19401736.2013.840592\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Larval dispersal may have an important effect on genetic structure of benthic species. However, different species may choose different larval dispersal strategy. To examine the population genetic structure and larval dispersal strategy of portunid crab Charybdis bimaculata, a 658 base pair (bp) fragment of mtDNA COI gene was sequenced in this species. In total, 67 individuals were collected from 5 locations in Yellow Sea and East China, and 24 haplotypes were obtained. Mean haplotype diversity and nucleotide diversity for the five populations ranged from 0.2000 ± 0.1541 (Zhoushan) to 0.8333 ± 0.1265 (Nanji island), and from 0.0003 ± 0.0005 (Zhoushan) to 0.0026 ± 0.0019 (Nanji island). Analysis of molecular variance and pairwise FST revealed no significant differentiation between the Yellow Sea and the East China Sea in C. bimaculata, supporting high larval dispersal ability in this species, rejecting larval retention. Mismatch distribution revealed that C. bimaculata had undergone population expansion. Larval drift in the ocean currents, and recent range expansion could be the reasons for little genetic structure in the studied area. </p>\",\"PeriodicalId\":49805,\"journal\":{\"name\":\"Mitochondrial Dna\",\"volume\":\"26 3\",\"pages\":\"402-8\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.3109/19401736.2013.840592\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mitochondrial Dna\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3109/19401736.2013.840592\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2013/10/14 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mitochondrial Dna","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3109/19401736.2013.840592","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2013/10/14 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
Population genetic structure and larval dispersal strategy of portunid crab Charybdis bimaculata in Yellow sea and East China sea.
Larval dispersal may have an important effect on genetic structure of benthic species. However, different species may choose different larval dispersal strategy. To examine the population genetic structure and larval dispersal strategy of portunid crab Charybdis bimaculata, a 658 base pair (bp) fragment of mtDNA COI gene was sequenced in this species. In total, 67 individuals were collected from 5 locations in Yellow Sea and East China, and 24 haplotypes were obtained. Mean haplotype diversity and nucleotide diversity for the five populations ranged from 0.2000 ± 0.1541 (Zhoushan) to 0.8333 ± 0.1265 (Nanji island), and from 0.0003 ± 0.0005 (Zhoushan) to 0.0026 ± 0.0019 (Nanji island). Analysis of molecular variance and pairwise FST revealed no significant differentiation between the Yellow Sea and the East China Sea in C. bimaculata, supporting high larval dispersal ability in this species, rejecting larval retention. Mismatch distribution revealed that C. bimaculata had undergone population expansion. Larval drift in the ocean currents, and recent range expansion could be the reasons for little genetic structure in the studied area.
期刊介绍:
Previously published under the title DNA Sequence (Vols 1-19.3), Mitochondrial DNA accepts original high-quality reports based on mapping, sequencing and analysis of mitochondrial DNA and RNA. Descriptive papers on DNA sequences from mitochondrial genomes, and also analytical papers in the areas of population genetics, medical genetics, phylogenetics and human evolution that use mitochondrial DNA as a source of evidence for studies will be considered for publication. The editorial board will also consider manuscripts that examine population genetic and systematic theory that specifically address the use of mitochondrial DNA sequences.