模拟人类胚状体细胞粘附到组合库的聚合物表面。

V Chandana Epa, Jing Yang, Ying Mei, Andrew L Hook, Robert Langer, Daniel G Anderson, Martyn C Davies, Morgan R Alexander, David A Winkler
{"title":"模拟人类胚状体细胞粘附到组合库的聚合物表面。","authors":"V Chandana Epa, Jing Yang, Ying Mei, Andrew L Hook, Robert Langer, Daniel G Anderson, Martyn C Davies, Morgan R Alexander, David A Winkler","doi":"10.1039/C2JM34782B","DOIUrl":null,"url":null,"abstract":"<p><p>Designing materials to control biology is an intense focus of biomaterials and regenerative medicine research. Discovering and designing materials with appropriate biological compatibility or active control of cells and tissues is being increasingly undertaken using high throughput synthesis and assessment methods. We report a relatively simple but powerful machine-learning method of generating models that link microscopic or molecular properties of polymers or other materials to their biological effects. We illustrate the potential of these methods by developing the first robust, predictive, quantitative, and purely computational models of adhesion of human embryonic stem cell embryoid bodies (hEB) to the surfaces of a 496-member polymer micro array library.</p>","PeriodicalId":16297,"journal":{"name":"Journal of Materials Chemistry","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2012-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1039/C2JM34782B","citationCount":"41","resultStr":"{\"title\":\"Modelling human embryoid body cell adhesion to a combinatorial library of polymer surfaces.\",\"authors\":\"V Chandana Epa, Jing Yang, Ying Mei, Andrew L Hook, Robert Langer, Daniel G Anderson, Martyn C Davies, Morgan R Alexander, David A Winkler\",\"doi\":\"10.1039/C2JM34782B\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Designing materials to control biology is an intense focus of biomaterials and regenerative medicine research. Discovering and designing materials with appropriate biological compatibility or active control of cells and tissues is being increasingly undertaken using high throughput synthesis and assessment methods. We report a relatively simple but powerful machine-learning method of generating models that link microscopic or molecular properties of polymers or other materials to their biological effects. We illustrate the potential of these methods by developing the first robust, predictive, quantitative, and purely computational models of adhesion of human embryonic stem cell embryoid bodies (hEB) to the surfaces of a 496-member polymer micro array library.</p>\",\"PeriodicalId\":16297,\"journal\":{\"name\":\"Journal of Materials Chemistry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1039/C2JM34782B\",\"citationCount\":\"41\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Chemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1039/C2JM34782B\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1039/C2JM34782B","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 41

摘要

设计控制生物学的材料是生物材料和再生医学研究的一个热点。使用高通量合成和评估方法,发现和设计具有适当生物相容性或对细胞和组织有活性控制的材料正在越来越多地进行。我们报告了一种相对简单但功能强大的机器学习方法,用于生成将聚合物或其他材料的微观或分子特性与其生物效应联系起来的模型。我们通过开发人类胚胎干细胞胚状体(hEB)与496个聚合物微阵列文库表面粘附的第一个稳健、预测、定量和纯计算模型来说明这些方法的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Modelling human embryoid body cell adhesion to a combinatorial library of polymer surfaces.

Designing materials to control biology is an intense focus of biomaterials and regenerative medicine research. Discovering and designing materials with appropriate biological compatibility or active control of cells and tissues is being increasingly undertaken using high throughput synthesis and assessment methods. We report a relatively simple but powerful machine-learning method of generating models that link microscopic or molecular properties of polymers or other materials to their biological effects. We illustrate the potential of these methods by developing the first robust, predictive, quantitative, and purely computational models of adhesion of human embryonic stem cell embryoid bodies (hEB) to the surfaces of a 496-member polymer micro array library.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Materials Chemistry
Journal of Materials Chemistry 工程技术-材料科学:综合
自引率
0.00%
发文量
0
审稿时长
1.5 months
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信