{"title":"具有局部修正三角剖分的弹性界面问题的有限元方法。","authors":"Hui Xie, Zhilin Li, Zhonghua Qiao","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>A finite element method for elasticity systems with discontinuities in the coefficients and the flux across an arbitrary interface is proposed in this paper. The method is based on a Cartesian mesh with local modifications to the mesh. The total degrees of the freedom of the finite element method remains the same as that of the Cartesian mesh. The local modifications lead to a quasi-uniform body-fitted mesh from the original Cartesian mesh. The standard finite element theory and implementation are applicable. Numerical examples that involve discontinuous material coefficients and non-homogeneous jump in the flux across the interface demonstrate the efficiency of the proposed method.</p>","PeriodicalId":50301,"journal":{"name":"International Journal of Numerical Analysis and Modeling","volume":"8 2","pages":"189-200"},"PeriodicalIF":1.3000,"publicationDate":"2011-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3777444/pdf/nihms495048.pdf","citationCount":"0","resultStr":"{\"title\":\"A FINITE ELEMENT METHOD FOR ELASTICITY INTERFACE PROBLEMS WITH LOCALLY MODIFIED TRIANGULATIONS.\",\"authors\":\"Hui Xie, Zhilin Li, Zhonghua Qiao\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>A finite element method for elasticity systems with discontinuities in the coefficients and the flux across an arbitrary interface is proposed in this paper. The method is based on a Cartesian mesh with local modifications to the mesh. The total degrees of the freedom of the finite element method remains the same as that of the Cartesian mesh. The local modifications lead to a quasi-uniform body-fitted mesh from the original Cartesian mesh. The standard finite element theory and implementation are applicable. Numerical examples that involve discontinuous material coefficients and non-homogeneous jump in the flux across the interface demonstrate the efficiency of the proposed method.</p>\",\"PeriodicalId\":50301,\"journal\":{\"name\":\"International Journal of Numerical Analysis and Modeling\",\"volume\":\"8 2\",\"pages\":\"189-200\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2011-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3777444/pdf/nihms495048.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Numerical Analysis and Modeling\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Numerical Analysis and Modeling","FirstCategoryId":"100","ListUrlMain":"","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
A FINITE ELEMENT METHOD FOR ELASTICITY INTERFACE PROBLEMS WITH LOCALLY MODIFIED TRIANGULATIONS.
A finite element method for elasticity systems with discontinuities in the coefficients and the flux across an arbitrary interface is proposed in this paper. The method is based on a Cartesian mesh with local modifications to the mesh. The total degrees of the freedom of the finite element method remains the same as that of the Cartesian mesh. The local modifications lead to a quasi-uniform body-fitted mesh from the original Cartesian mesh. The standard finite element theory and implementation are applicable. Numerical examples that involve discontinuous material coefficients and non-homogeneous jump in the flux across the interface demonstrate the efficiency of the proposed method.
期刊介绍:
The journal is directed to the broad spectrum of researchers in numerical methods throughout science and engineering, and publishes high quality original papers in all fields of numerical analysis and mathematical modeling including: numerical differential equations, scientific computing, linear algebra, control, optimization, and related areas of engineering and scientific applications. The journal welcomes the contribution of original developments of numerical methods, mathematical analysis leading to better understanding of the existing algorithms, and applications of numerical techniques to real engineering and scientific problems. Rigorous studies of the convergence of algorithms, their accuracy and stability, and their computational complexity are appropriate for this journal. Papers addressing new numerical algorithms and techniques, demonstrating the potential of some novel ideas, describing experiments involving new models and simulations for practical problems are also suitable topics for the journal. The journal welcomes survey articles which summarize state of art knowledge and present open problems of particular numerical techniques and mathematical models.