{"title":"基于分子模型的18元内酯构象分析。","authors":"Salah Belaidi, Dalal Harkati","doi":"10.5402/2011/594242","DOIUrl":null,"url":null,"abstract":"<p><p>Conformational analysis of 18-ring membered macrolactones has been carried out using molecular mechanics calculations and molecular dynamics. A high conformational flexibility of macrolactones was obtained, and an important stereoselectivity was observed for the complexed macrolides. For 18d macrolactone, which was presented by a most favored conformer with 20.1% without complex, it was populated with 50.1% in presence of Fe(CO)3. </p>","PeriodicalId":14730,"journal":{"name":"ISRN Organic Chemistry","volume":"2011 ","pages":"594242"},"PeriodicalIF":0.0000,"publicationDate":"2011-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.5402/2011/594242","citationCount":"3","resultStr":"{\"title\":\"Conformational analysis in 18-membered macrolactones based on molecular modeling.\",\"authors\":\"Salah Belaidi, Dalal Harkati\",\"doi\":\"10.5402/2011/594242\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Conformational analysis of 18-ring membered macrolactones has been carried out using molecular mechanics calculations and molecular dynamics. A high conformational flexibility of macrolactones was obtained, and an important stereoselectivity was observed for the complexed macrolides. For 18d macrolactone, which was presented by a most favored conformer with 20.1% without complex, it was populated with 50.1% in presence of Fe(CO)3. </p>\",\"PeriodicalId\":14730,\"journal\":{\"name\":\"ISRN Organic Chemistry\",\"volume\":\"2011 \",\"pages\":\"594242\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-04-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.5402/2011/594242\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ISRN Organic Chemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5402/2011/594242\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2011/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISRN Organic Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5402/2011/594242","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2011/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
Conformational analysis in 18-membered macrolactones based on molecular modeling.
Conformational analysis of 18-ring membered macrolactones has been carried out using molecular mechanics calculations and molecular dynamics. A high conformational flexibility of macrolactones was obtained, and an important stereoselectivity was observed for the complexed macrolides. For 18d macrolactone, which was presented by a most favored conformer with 20.1% without complex, it was populated with 50.1% in presence of Fe(CO)3.