Oskar Erik Karlsson, Trine Hansen, Rickard Knutsson, Charlotta Löfström, Fredrik Granberg, Mikael Berg
{"title":"生物防备暴发情景中的宏基因组检测方法。","authors":"Oskar Erik Karlsson, Trine Hansen, Rickard Knutsson, Charlotta Löfström, Fredrik Granberg, Mikael Berg","doi":"10.1089/bsp.2012.0077","DOIUrl":null,"url":null,"abstract":"<p><p>In the field of diagnostic microbiology, rapid molecular methods are critically important for detecting pathogens. With rapid and accurate detection, preventive measures can be put in place early, thereby preventing loss of life and further spread of a disease. From a preparedness perspective, early detection and response are important in order to minimize the consequences. During the past 2 decades, advances in next-generation sequencing (NGS) technology have changed the playing field of molecular methods. Today, it is within reach to completely sequence the total microbiological content of a clinical sample, creating a metagenome, in a single week of laboratory work. As new technologies emerge, their dissemination and capacity building must be facilitated, and criteria for use, as well as guidelines on how to report results, must be established. This article focuses on the use of metagenomics, from sample collection to data analysis and to some extent NGS, for the detection of pathogens, the integration of the technique in outbreak response systems, and the risk-based evaluation of sample processing in routine diagnostics labs. The article covers recent advances in the field, current debate, gaps in research, and future directions. Examples of metagenomic detection, as well as possible applications of the methods, are described in various biopreparedness outbreak scenarios. </p>","PeriodicalId":87059,"journal":{"name":"Biosecurity and bioterrorism : biodefense strategy, practice, and science","volume":"11 Suppl 1 ","pages":"S146-57"},"PeriodicalIF":0.0000,"publicationDate":"2013-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1089/bsp.2012.0077","citationCount":"18","resultStr":"{\"title\":\"Metagenomic detection methods in biopreparedness outbreak scenarios.\",\"authors\":\"Oskar Erik Karlsson, Trine Hansen, Rickard Knutsson, Charlotta Löfström, Fredrik Granberg, Mikael Berg\",\"doi\":\"10.1089/bsp.2012.0077\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In the field of diagnostic microbiology, rapid molecular methods are critically important for detecting pathogens. With rapid and accurate detection, preventive measures can be put in place early, thereby preventing loss of life and further spread of a disease. From a preparedness perspective, early detection and response are important in order to minimize the consequences. During the past 2 decades, advances in next-generation sequencing (NGS) technology have changed the playing field of molecular methods. Today, it is within reach to completely sequence the total microbiological content of a clinical sample, creating a metagenome, in a single week of laboratory work. As new technologies emerge, their dissemination and capacity building must be facilitated, and criteria for use, as well as guidelines on how to report results, must be established. This article focuses on the use of metagenomics, from sample collection to data analysis and to some extent NGS, for the detection of pathogens, the integration of the technique in outbreak response systems, and the risk-based evaluation of sample processing in routine diagnostics labs. The article covers recent advances in the field, current debate, gaps in research, and future directions. Examples of metagenomic detection, as well as possible applications of the methods, are described in various biopreparedness outbreak scenarios. </p>\",\"PeriodicalId\":87059,\"journal\":{\"name\":\"Biosecurity and bioterrorism : biodefense strategy, practice, and science\",\"volume\":\"11 Suppl 1 \",\"pages\":\"S146-57\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1089/bsp.2012.0077\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biosecurity and bioterrorism : biodefense strategy, practice, and science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1089/bsp.2012.0077\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biosecurity and bioterrorism : biodefense strategy, practice, and science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1089/bsp.2012.0077","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Metagenomic detection methods in biopreparedness outbreak scenarios.
In the field of diagnostic microbiology, rapid molecular methods are critically important for detecting pathogens. With rapid and accurate detection, preventive measures can be put in place early, thereby preventing loss of life and further spread of a disease. From a preparedness perspective, early detection and response are important in order to minimize the consequences. During the past 2 decades, advances in next-generation sequencing (NGS) technology have changed the playing field of molecular methods. Today, it is within reach to completely sequence the total microbiological content of a clinical sample, creating a metagenome, in a single week of laboratory work. As new technologies emerge, their dissemination and capacity building must be facilitated, and criteria for use, as well as guidelines on how to report results, must be established. This article focuses on the use of metagenomics, from sample collection to data analysis and to some extent NGS, for the detection of pathogens, the integration of the technique in outbreak response systems, and the risk-based evaluation of sample processing in routine diagnostics labs. The article covers recent advances in the field, current debate, gaps in research, and future directions. Examples of metagenomic detection, as well as possible applications of the methods, are described in various biopreparedness outbreak scenarios.