基于隐马尔可夫树模型的功能磁共振图像统计恢复神经活动检测。

Q4 Pharmacology, Toxicology and Pharmaceutics
Chuan Li, Qi Hao
{"title":"基于隐马尔可夫树模型的功能磁共振图像统计恢复神经活动检测。","authors":"Chuan Li,&nbsp;Qi Hao","doi":"10.1504/IJCBDD.2013.055463","DOIUrl":null,"url":null,"abstract":"<p><p>In this paper, we present a framework for functional MR image restoration based on the Hidden Markov Tree (HMT) model. Under this scheme, the wavelet/contourlet coefficients of the distorted image are filtered using the HMT model of the baseline image to minimise the statistical divergence between two images. An iterative algorithm between image registration and HMT filtering is developed to achieve a trade-off between the least mean square error (in the spatial domain) and the minimum statistical divergence (in the spectral domain). We demonstrate that the proposed method can eliminate the motion artefacts (such as spikes and burring) in the Functional MR Imaging data more effectively, leading to reliable neural activity detection. This method can also be used for image restoration in other medical imaging applications. </p>","PeriodicalId":39227,"journal":{"name":"International Journal of Computational Biology and Drug Design","volume":"6 3","pages":"190-209"},"PeriodicalIF":0.0000,"publicationDate":"2013-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1504/IJCBDD.2013.055463","citationCount":"2","resultStr":"{\"title\":\"Functional MR image statistical restoration for neural activity detection using Hidden Markov Tree model.\",\"authors\":\"Chuan Li,&nbsp;Qi Hao\",\"doi\":\"10.1504/IJCBDD.2013.055463\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In this paper, we present a framework for functional MR image restoration based on the Hidden Markov Tree (HMT) model. Under this scheme, the wavelet/contourlet coefficients of the distorted image are filtered using the HMT model of the baseline image to minimise the statistical divergence between two images. An iterative algorithm between image registration and HMT filtering is developed to achieve a trade-off between the least mean square error (in the spatial domain) and the minimum statistical divergence (in the spectral domain). We demonstrate that the proposed method can eliminate the motion artefacts (such as spikes and burring) in the Functional MR Imaging data more effectively, leading to reliable neural activity detection. This method can also be used for image restoration in other medical imaging applications. </p>\",\"PeriodicalId\":39227,\"journal\":{\"name\":\"International Journal of Computational Biology and Drug Design\",\"volume\":\"6 3\",\"pages\":\"190-209\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1504/IJCBDD.2013.055463\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Computational Biology and Drug Design\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1504/IJCBDD.2013.055463\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2013/7/30 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"Pharmacology, Toxicology and Pharmaceutics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computational Biology and Drug Design","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJCBDD.2013.055463","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2013/7/30 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"Pharmacology, Toxicology and Pharmaceutics","Score":null,"Total":0}
引用次数: 2

摘要

在本文中,我们提出了一个基于隐马尔可夫树(HMT)模型的功能性磁共振图像恢复框架。该方案利用基线图像的HMT模型对畸变图像的小波/轮廓系数进行滤波,使两幅图像之间的统计差异最小化。在图像配准和HMT滤波之间提出了一种迭代算法,以实现最小均方误差(在空间域)和最小统计散度(在光谱域)之间的权衡。我们证明,该方法可以更有效地消除功能磁共振成像数据中的运动伪影(如尖峰和毛刺),从而实现可靠的神经活动检测。该方法也可用于其他医学成像应用中的图像恢复。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Functional MR image statistical restoration for neural activity detection using Hidden Markov Tree model.

In this paper, we present a framework for functional MR image restoration based on the Hidden Markov Tree (HMT) model. Under this scheme, the wavelet/contourlet coefficients of the distorted image are filtered using the HMT model of the baseline image to minimise the statistical divergence between two images. An iterative algorithm between image registration and HMT filtering is developed to achieve a trade-off between the least mean square error (in the spatial domain) and the minimum statistical divergence (in the spectral domain). We demonstrate that the proposed method can eliminate the motion artefacts (such as spikes and burring) in the Functional MR Imaging data more effectively, leading to reliable neural activity detection. This method can also be used for image restoration in other medical imaging applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Computational Biology and Drug Design
International Journal of Computational Biology and Drug Design Pharmacology, Toxicology and Pharmaceutics-Drug Discovery
CiteScore
1.00
自引率
0.00%
发文量
8
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信