乙醛的纤维化作用依赖于β-连环蛋白,但无翼独立:核氧还蛋白和活性氧在人肝星状细胞中的关键作用。

Free radical biology & medicine Pub Date : 2013-12-01 Epub Date: 2013-07-20 DOI:10.1016/j.freeradbiomed.2013.07.017
Jaime Arellanes-Robledo, Karina Reyes-Gordillo, Ruchi Shah, José Alfredo Domínguez-Rosales, Zamira Helena Hernández-Nazara, Francesco Ramirez, Marcos Rojkind, M Raj Lakshman
{"title":"乙醛的纤维化作用依赖于β-连环蛋白,但无翼独立:核氧还蛋白和活性氧在人肝星状细胞中的关键作用。","authors":"Jaime Arellanes-Robledo,&nbsp;Karina Reyes-Gordillo,&nbsp;Ruchi Shah,&nbsp;José Alfredo Domínguez-Rosales,&nbsp;Zamira Helena Hernández-Nazara,&nbsp;Francesco Ramirez,&nbsp;Marcos Rojkind,&nbsp;M Raj Lakshman","doi":"10.1016/j.freeradbiomed.2013.07.017","DOIUrl":null,"url":null,"abstract":"<p><p>We investigated whether the fibrogenic actions of acetaldehyde, the immediate oxidation product of ethanol, are mediated via Wingless (WNT) and/or β-catenin pathways in human hepatic stellate cells (HSC). First, we show that both β-catenin small inhibitory RNA and a dominant negative-MYC expression vector markedly down-regulated the expressions of fibrogenic genes in freshly isolated HSC. We further show that acetaldehyde up-regulated platelet-derived growth factor receptor beta mRNA and protein expressions ranging from 4.0- to 7.2-fold (P<0.001). Acetaldehyde induced MYC and collagen type-1 alpha-2 mRNA and protein expressions were WNT independent because DKK1, an antagonist of the canonical WNT/β-catenin pathway, completely failed to block these inductions. Acetaldehyde increased phospho-glycogen synthase kinase-3 beta (GSK3B) protein by 31% (P<0.01), whereas phospho-β-catenin protein decreased by 50% (P ≤ 0.01). Significantly, in contrast to 43% (P<0.01) inhibition of β-catenin nuclear translocation in nucleoredoxin (NXN)-overexpressed HSC, acetaldehyde profoundly stimulated β-catenin nuclear translocation by 51%, (P<0.01). Acetaldehyde also increased the cellular reactive oxygen species level 2-fold (P<0.001) with a concomitant 2-fold (P<0.001) increase in 4-hydroxynonenal adducts. Conversely, there was a 44% decrease (P<0.001) in glutathione levels with a concomitant 76% (P<0.001) decrease in the level of NXN/ disheveled (DVL) complex. Based on these findings, we conclude that actions of acetaldehyde are mediated by a mechanism that inactivates NXN by releasing DVL, leading to the inactivation of GSK3B, and thereby blocks β-catenin phosphorylation and degradation. Thus, the stabilized β-catenin translocates to the nucleus where it up-regulates the fibrogenic pathway genes. This novel mechanism of action of acetaldehyde has the potential for therapeutic interventions in liver fibrosis induced by alcohol.</p>","PeriodicalId":505743,"journal":{"name":"Free radical biology & medicine","volume":" ","pages":"1487-1496"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.freeradbiomed.2013.07.017","citationCount":"25","resultStr":"{\"title\":\"Fibrogenic actions of acetaldehyde are β-catenin dependent but Wingless independent: a critical role of nucleoredoxin and reactive oxygen species in human hepatic stellate cells.\",\"authors\":\"Jaime Arellanes-Robledo,&nbsp;Karina Reyes-Gordillo,&nbsp;Ruchi Shah,&nbsp;José Alfredo Domínguez-Rosales,&nbsp;Zamira Helena Hernández-Nazara,&nbsp;Francesco Ramirez,&nbsp;Marcos Rojkind,&nbsp;M Raj Lakshman\",\"doi\":\"10.1016/j.freeradbiomed.2013.07.017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We investigated whether the fibrogenic actions of acetaldehyde, the immediate oxidation product of ethanol, are mediated via Wingless (WNT) and/or β-catenin pathways in human hepatic stellate cells (HSC). First, we show that both β-catenin small inhibitory RNA and a dominant negative-MYC expression vector markedly down-regulated the expressions of fibrogenic genes in freshly isolated HSC. We further show that acetaldehyde up-regulated platelet-derived growth factor receptor beta mRNA and protein expressions ranging from 4.0- to 7.2-fold (P<0.001). Acetaldehyde induced MYC and collagen type-1 alpha-2 mRNA and protein expressions were WNT independent because DKK1, an antagonist of the canonical WNT/β-catenin pathway, completely failed to block these inductions. Acetaldehyde increased phospho-glycogen synthase kinase-3 beta (GSK3B) protein by 31% (P<0.01), whereas phospho-β-catenin protein decreased by 50% (P ≤ 0.01). Significantly, in contrast to 43% (P<0.01) inhibition of β-catenin nuclear translocation in nucleoredoxin (NXN)-overexpressed HSC, acetaldehyde profoundly stimulated β-catenin nuclear translocation by 51%, (P<0.01). Acetaldehyde also increased the cellular reactive oxygen species level 2-fold (P<0.001) with a concomitant 2-fold (P<0.001) increase in 4-hydroxynonenal adducts. Conversely, there was a 44% decrease (P<0.001) in glutathione levels with a concomitant 76% (P<0.001) decrease in the level of NXN/ disheveled (DVL) complex. Based on these findings, we conclude that actions of acetaldehyde are mediated by a mechanism that inactivates NXN by releasing DVL, leading to the inactivation of GSK3B, and thereby blocks β-catenin phosphorylation and degradation. Thus, the stabilized β-catenin translocates to the nucleus where it up-regulates the fibrogenic pathway genes. This novel mechanism of action of acetaldehyde has the potential for therapeutic interventions in liver fibrosis induced by alcohol.</p>\",\"PeriodicalId\":505743,\"journal\":{\"name\":\"Free radical biology & medicine\",\"volume\":\" \",\"pages\":\"1487-1496\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.freeradbiomed.2013.07.017\",\"citationCount\":\"25\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Free radical biology & medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.freeradbiomed.2013.07.017\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2013/7/20 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Free radical biology & medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.freeradbiomed.2013.07.017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2013/7/20 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 25

摘要

我们研究了乙醇的直接氧化产物乙醛的纤维化作用是否通过无翼(WNT)和/或β-catenin途径在人肝星状细胞(HSC)中介导。首先,我们发现β-catenin小抑制RNA和显性负myc表达载体在新分离的HSC中显著下调纤维化基因的表达。我们进一步表明,乙醛上调血小板衍生生长因子受体β mRNA和蛋白的表达,上调幅度为4.0至7.2倍(P
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fibrogenic actions of acetaldehyde are β-catenin dependent but Wingless independent: a critical role of nucleoredoxin and reactive oxygen species in human hepatic stellate cells.

We investigated whether the fibrogenic actions of acetaldehyde, the immediate oxidation product of ethanol, are mediated via Wingless (WNT) and/or β-catenin pathways in human hepatic stellate cells (HSC). First, we show that both β-catenin small inhibitory RNA and a dominant negative-MYC expression vector markedly down-regulated the expressions of fibrogenic genes in freshly isolated HSC. We further show that acetaldehyde up-regulated platelet-derived growth factor receptor beta mRNA and protein expressions ranging from 4.0- to 7.2-fold (P<0.001). Acetaldehyde induced MYC and collagen type-1 alpha-2 mRNA and protein expressions were WNT independent because DKK1, an antagonist of the canonical WNT/β-catenin pathway, completely failed to block these inductions. Acetaldehyde increased phospho-glycogen synthase kinase-3 beta (GSK3B) protein by 31% (P<0.01), whereas phospho-β-catenin protein decreased by 50% (P ≤ 0.01). Significantly, in contrast to 43% (P<0.01) inhibition of β-catenin nuclear translocation in nucleoredoxin (NXN)-overexpressed HSC, acetaldehyde profoundly stimulated β-catenin nuclear translocation by 51%, (P<0.01). Acetaldehyde also increased the cellular reactive oxygen species level 2-fold (P<0.001) with a concomitant 2-fold (P<0.001) increase in 4-hydroxynonenal adducts. Conversely, there was a 44% decrease (P<0.001) in glutathione levels with a concomitant 76% (P<0.001) decrease in the level of NXN/ disheveled (DVL) complex. Based on these findings, we conclude that actions of acetaldehyde are mediated by a mechanism that inactivates NXN by releasing DVL, leading to the inactivation of GSK3B, and thereby blocks β-catenin phosphorylation and degradation. Thus, the stabilized β-catenin translocates to the nucleus where it up-regulates the fibrogenic pathway genes. This novel mechanism of action of acetaldehyde has the potential for therapeutic interventions in liver fibrosis induced by alcohol.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信