{"title":"鸽子和人类的主动变化检测。","authors":"Carl Erick Hagmann, Robert G Cook","doi":"10.1037/a0033313","DOIUrl":null,"url":null,"abstract":"<p><p>Detecting change is vital to both human and nonhuman animals' interactions with the environment. Using the go/no-go dynamic change detection task, we examined the capacity of four pigeons to detect changes in brightness of an area on a computer display. In contrast to our prior research, we reversed the response contingencies so that the animals had to actively inhibit pecking upon detecting change in brightness rather than its constancy. Testing eight rates of change revealed that this direct report change detection contingency produced results equivalent to the earlier indirect procedure. Corresponding tests with humans suggested that the temporal dynamics of detecting change were similar for both species. The results indicate the mechanisms of change detection in both pigeons and humans are organized in similar ways, although limitations in the operations of working memory may prevent pigeons from integrating information over the same time scale as humans.</p>","PeriodicalId":51088,"journal":{"name":"Journal of Experimental Psychology-Animal Learning and Cognition","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2013-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1037/a0033313","citationCount":"15","resultStr":"{\"title\":\"Active change detection by pigeons and humans.\",\"authors\":\"Carl Erick Hagmann, Robert G Cook\",\"doi\":\"10.1037/a0033313\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Detecting change is vital to both human and nonhuman animals' interactions with the environment. Using the go/no-go dynamic change detection task, we examined the capacity of four pigeons to detect changes in brightness of an area on a computer display. In contrast to our prior research, we reversed the response contingencies so that the animals had to actively inhibit pecking upon detecting change in brightness rather than its constancy. Testing eight rates of change revealed that this direct report change detection contingency produced results equivalent to the earlier indirect procedure. Corresponding tests with humans suggested that the temporal dynamics of detecting change were similar for both species. The results indicate the mechanisms of change detection in both pigeons and humans are organized in similar ways, although limitations in the operations of working memory may prevent pigeons from integrating information over the same time scale as humans.</p>\",\"PeriodicalId\":51088,\"journal\":{\"name\":\"Journal of Experimental Psychology-Animal Learning and Cognition\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2013-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1037/a0033313\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Experimental Psychology-Animal Learning and Cognition\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://doi.org/10.1037/a0033313\",\"RegionNum\":4,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2013/7/22 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Experimental Psychology-Animal Learning and Cognition","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1037/a0033313","RegionNum":4,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2013/7/22 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
Detecting change is vital to both human and nonhuman animals' interactions with the environment. Using the go/no-go dynamic change detection task, we examined the capacity of four pigeons to detect changes in brightness of an area on a computer display. In contrast to our prior research, we reversed the response contingencies so that the animals had to actively inhibit pecking upon detecting change in brightness rather than its constancy. Testing eight rates of change revealed that this direct report change detection contingency produced results equivalent to the earlier indirect procedure. Corresponding tests with humans suggested that the temporal dynamics of detecting change were similar for both species. The results indicate the mechanisms of change detection in both pigeons and humans are organized in similar ways, although limitations in the operations of working memory may prevent pigeons from integrating information over the same time scale as humans.
期刊介绍:
The Journal of Experimental Psychology: Animal Learning and Cognition publishes experimental and theoretical studies concerning all aspects of animal behavior processes.