利用分子模拟和力谱技术分析多囊蛋白-1的REJ模块。

Meixiang Xu, Liang Ma, Paul J Bujalowski, Feng Qian, R Bryan Sutton, Andres F Oberhauser
{"title":"利用分子模拟和力谱技术分析多囊蛋白-1的REJ模块。","authors":"Meixiang Xu,&nbsp;Liang Ma,&nbsp;Paul J Bujalowski,&nbsp;Feng Qian,&nbsp;R Bryan Sutton,&nbsp;Andres F Oberhauser","doi":"10.1155/2013/525231","DOIUrl":null,"url":null,"abstract":"<p><p>Polycystin-1 is a large transmembrane protein, which, when mutated, causes autosomal dominant polycystic kidney disease, one of the most common life-threatening genetic diseases that is a leading cause of kidney failure. The REJ (receptor for egg lelly) module is a major component of PC1 ectodomain that extends to about 1000 amino acids. Many missense disease-causing mutations map to this module; however, very little is known about the structure or function of this region. We used a combination of homology molecular modeling, protein engineering, steered molecular dynamics (SMD) simulations, and single-molecule force spectroscopy (SMFS) to analyze the conformation and mechanical stability of the first ~420 amino acids of REJ. Homology molecular modeling analysis revealed that this region may contain structural elements that have an FNIII-like structure, which we named REJd1, REJd2, REJd3, and REJd4. We found that REJd1 has a higher mechanical stability than REJd2 (~190 pN and 60 pN, resp.). Our data suggest that the putative domains REJd3 and REJd4 likely do not form mechanically stable folds. Our experimental approach opens a new way to systematically study the effects of disease-causing mutations on the structure and mechanical properties of the REJ module of PC1.</p>","PeriodicalId":73623,"journal":{"name":"Journal of biophysics (Hindawi Publishing Corporation : Online)","volume":" ","pages":"525231"},"PeriodicalIF":0.0000,"publicationDate":"2013-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2013/525231","citationCount":"10","resultStr":"{\"title\":\"Analysis of the REJ Module of Polycystin-1 Using Molecular Modeling and Force-Spectroscopy Techniques.\",\"authors\":\"Meixiang Xu,&nbsp;Liang Ma,&nbsp;Paul J Bujalowski,&nbsp;Feng Qian,&nbsp;R Bryan Sutton,&nbsp;Andres F Oberhauser\",\"doi\":\"10.1155/2013/525231\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Polycystin-1 is a large transmembrane protein, which, when mutated, causes autosomal dominant polycystic kidney disease, one of the most common life-threatening genetic diseases that is a leading cause of kidney failure. The REJ (receptor for egg lelly) module is a major component of PC1 ectodomain that extends to about 1000 amino acids. Many missense disease-causing mutations map to this module; however, very little is known about the structure or function of this region. We used a combination of homology molecular modeling, protein engineering, steered molecular dynamics (SMD) simulations, and single-molecule force spectroscopy (SMFS) to analyze the conformation and mechanical stability of the first ~420 amino acids of REJ. Homology molecular modeling analysis revealed that this region may contain structural elements that have an FNIII-like structure, which we named REJd1, REJd2, REJd3, and REJd4. We found that REJd1 has a higher mechanical stability than REJd2 (~190 pN and 60 pN, resp.). Our data suggest that the putative domains REJd3 and REJd4 likely do not form mechanically stable folds. Our experimental approach opens a new way to systematically study the effects of disease-causing mutations on the structure and mechanical properties of the REJ module of PC1.</p>\",\"PeriodicalId\":73623,\"journal\":{\"name\":\"Journal of biophysics (Hindawi Publishing Corporation : Online)\",\"volume\":\" \",\"pages\":\"525231\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1155/2013/525231\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of biophysics (Hindawi Publishing Corporation : Online)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2013/525231\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2013/5/26 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of biophysics (Hindawi Publishing Corporation : Online)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2013/525231","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2013/5/26 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

多囊蛋白-1是一种大型跨膜蛋白,当发生突变时,可导致常染色体显性多囊肾病,这是最常见的危及生命的遗传性疾病之一,是肾衰竭的主要原因。REJ(卵磷脂受体)模块是PC1外结构域的主要组成部分,延伸到约1000个氨基酸。许多错义致病突变都与这个模块有关;然而,人们对这一区域的结构和功能知之甚少。采用同源分子建模、蛋白质工程、定向分子动力学(SMD)模拟和单分子力谱(SMFS)技术对REJ前~420个氨基酸的构象和力学稳定性进行了分析。同源性分子模型分析显示,该区域可能含有类似fniii的结构元件,我们将其命名为REJd1、REJd2、REJd3和REJd4。研究发现,REJd1具有比REJd2更高的机械稳定性(~190 pN和60 pN)。我们的数据表明,假设的结构域REJd3和REJd4可能不会形成机械稳定的褶皱。我们的实验方法为系统研究致病突变对PC1 REJ模块结构和力学性能的影响开辟了新的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Analysis of the REJ Module of Polycystin-1 Using Molecular Modeling and Force-Spectroscopy Techniques.

Analysis of the REJ Module of Polycystin-1 Using Molecular Modeling and Force-Spectroscopy Techniques.

Analysis of the REJ Module of Polycystin-1 Using Molecular Modeling and Force-Spectroscopy Techniques.

Analysis of the REJ Module of Polycystin-1 Using Molecular Modeling and Force-Spectroscopy Techniques.

Polycystin-1 is a large transmembrane protein, which, when mutated, causes autosomal dominant polycystic kidney disease, one of the most common life-threatening genetic diseases that is a leading cause of kidney failure. The REJ (receptor for egg lelly) module is a major component of PC1 ectodomain that extends to about 1000 amino acids. Many missense disease-causing mutations map to this module; however, very little is known about the structure or function of this region. We used a combination of homology molecular modeling, protein engineering, steered molecular dynamics (SMD) simulations, and single-molecule force spectroscopy (SMFS) to analyze the conformation and mechanical stability of the first ~420 amino acids of REJ. Homology molecular modeling analysis revealed that this region may contain structural elements that have an FNIII-like structure, which we named REJd1, REJd2, REJd3, and REJd4. We found that REJd1 has a higher mechanical stability than REJd2 (~190 pN and 60 pN, resp.). Our data suggest that the putative domains REJd3 and REJd4 likely do not form mechanically stable folds. Our experimental approach opens a new way to systematically study the effects of disease-causing mutations on the structure and mechanical properties of the REJ module of PC1.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信