临床叙述中跨机构药物描述模式分析。

Biomedical informatics insights Pub Date : 2013-06-24 Print Date: 2013-01-01 DOI:10.4137/BII.S11634
Sunghwan Sohn, Cheryl Clark, Scott R Halgrim, Sean P Murphy, Siddhartha R Jonnalagadda, Kavishwar B Wagholikar, Stephen T Wu, Christopher G Chute, Hongfang Liu
{"title":"临床叙述中跨机构药物描述模式分析。","authors":"Sunghwan Sohn,&nbsp;Cheryl Clark,&nbsp;Scott R Halgrim,&nbsp;Sean P Murphy,&nbsp;Siddhartha R Jonnalagadda,&nbsp;Kavishwar B Wagholikar,&nbsp;Stephen T Wu,&nbsp;Christopher G Chute,&nbsp;Hongfang Liu","doi":"10.4137/BII.S11634","DOIUrl":null,"url":null,"abstract":"<p><p>A large amount of medication information resides in the unstructured text found in electronic medical records, which requires advanced techniques to be properly mined. In clinical notes, medication information follows certain semantic patterns (eg, medication, dosage, frequency, and mode). Some medication descriptions contain additional word(s) between medication attributes. Therefore, it is essential to understand the semantic patterns as well as the patterns of the context interspersed among them (ie, context patterns) to effectively extract comprehensive medication information. In this paper we examined both semantic and context patterns, and compared those found in Mayo Clinic and i2b2 challenge data. We found that some variations exist between the institutions but the dominant patterns are common. </p>","PeriodicalId":88397,"journal":{"name":"Biomedical informatics insights","volume":"6 Suppl 1","pages":"7-16"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.4137/BII.S11634","citationCount":"13","resultStr":"{\"title\":\"Analysis of cross-institutional medication description patterns in clinical narratives.\",\"authors\":\"Sunghwan Sohn,&nbsp;Cheryl Clark,&nbsp;Scott R Halgrim,&nbsp;Sean P Murphy,&nbsp;Siddhartha R Jonnalagadda,&nbsp;Kavishwar B Wagholikar,&nbsp;Stephen T Wu,&nbsp;Christopher G Chute,&nbsp;Hongfang Liu\",\"doi\":\"10.4137/BII.S11634\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>A large amount of medication information resides in the unstructured text found in electronic medical records, which requires advanced techniques to be properly mined. In clinical notes, medication information follows certain semantic patterns (eg, medication, dosage, frequency, and mode). Some medication descriptions contain additional word(s) between medication attributes. Therefore, it is essential to understand the semantic patterns as well as the patterns of the context interspersed among them (ie, context patterns) to effectively extract comprehensive medication information. In this paper we examined both semantic and context patterns, and compared those found in Mayo Clinic and i2b2 challenge data. We found that some variations exist between the institutions but the dominant patterns are common. </p>\",\"PeriodicalId\":88397,\"journal\":{\"name\":\"Biomedical informatics insights\",\"volume\":\"6 Suppl 1\",\"pages\":\"7-16\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-06-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.4137/BII.S11634\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomedical informatics insights\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4137/BII.S11634\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2013/1/1 0:00:00\",\"PubModel\":\"Print\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical informatics insights","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4137/BII.S11634","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2013/1/1 0:00:00","PubModel":"Print","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

大量的药物信息存在于电子病历中的非结构化文本中,这需要先进的技术来进行适当的挖掘。在临床记录中,药物信息遵循一定的语义模式(例如,药物、剂量、频率和模式)。一些药物描述在药物属性之间包含额外的单词。因此,要有效地提取综合用药信息,必须了解语义模式以及穿插其中的上下文模式(即上下文模式)。在本文中,我们研究了语义模式和上下文模式,并比较了梅奥诊所和i2b2挑战数据中发现的模式。我们发现制度之间存在一些差异,但主导模式是共同的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Analysis of cross-institutional medication description patterns in clinical narratives.

Analysis of cross-institutional medication description patterns in clinical narratives.

Analysis of cross-institutional medication description patterns in clinical narratives.

Analysis of cross-institutional medication description patterns in clinical narratives.

A large amount of medication information resides in the unstructured text found in electronic medical records, which requires advanced techniques to be properly mined. In clinical notes, medication information follows certain semantic patterns (eg, medication, dosage, frequency, and mode). Some medication descriptions contain additional word(s) between medication attributes. Therefore, it is essential to understand the semantic patterns as well as the patterns of the context interspersed among them (ie, context patterns) to effectively extract comprehensive medication information. In this paper we examined both semantic and context patterns, and compared those found in Mayo Clinic and i2b2 challenge data. We found that some variations exist between the institutions but the dominant patterns are common.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信