genpattern流式细胞仪套件。

Q2 Decision Sciences
Josef Spidlen, Aaron Barsky, Karin Breuer, Peter Carr, Marc-Danie Nazaire, Barbara Allen Hill, Yu Qian, Ted Liefeld, Michael Reich, Jill P Mesirov, Peter Wilkinson, Richard H Scheuermann, Rafick-Pierre Sekaly, Ryan R Brinkman
{"title":"genpattern流式细胞仪套件。","authors":"Josef Spidlen,&nbsp;Aaron Barsky,&nbsp;Karin Breuer,&nbsp;Peter Carr,&nbsp;Marc-Danie Nazaire,&nbsp;Barbara Allen Hill,&nbsp;Yu Qian,&nbsp;Ted Liefeld,&nbsp;Michael Reich,&nbsp;Jill P Mesirov,&nbsp;Peter Wilkinson,&nbsp;Richard H Scheuermann,&nbsp;Rafick-Pierre Sekaly,&nbsp;Ryan R Brinkman","doi":"10.1186/1751-0473-8-14","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Traditional flow cytometry data analysis is largely based on interactive and time consuming analysis of series two dimensional representations of up to 20 dimensional data. Recent technological advances have increased the amount of data generated by the technology and outpaced the development of data analysis approaches. While there are advanced tools available, including many R/BioConductor packages, these are only accessible programmatically and therefore out of reach for most experimentalists. GenePattern is a powerful genomic analysis platform with over 200 tools for analysis of gene expression, proteomics, and other data. A web-based interface provides easy access to these tools and allows the creation of automated analysis pipelines enabling reproducible research.</p><p><strong>Results: </strong>In order to bring advanced flow cytometry data analysis tools to experimentalists without programmatic skills, we developed the GenePattern Flow Cytometry Suite. It contains 34 open source GenePattern flow cytometry modules covering methods from basic processing of flow cytometry standard (i.e., FCS) files to advanced algorithms for automated identification of cell populations, normalization and quality assessment. Internally, these modules leverage from functionality developed in R/BioConductor. Using the GenePattern web-based interface, they can be connected to build analytical pipelines.</p><p><strong>Conclusions: </strong>GenePattern Flow Cytometry Suite brings advanced flow cytometry data analysis capabilities to users with minimal computer skills. Functionality previously available only to skilled bioinformaticians is now easily accessible from a web browser.</p>","PeriodicalId":35052,"journal":{"name":"Source Code for Biology and Medicine","volume":"8 1","pages":"14"},"PeriodicalIF":0.0000,"publicationDate":"2013-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/1751-0473-8-14","citationCount":"23","resultStr":"{\"title\":\"GenePattern flow cytometry suite.\",\"authors\":\"Josef Spidlen,&nbsp;Aaron Barsky,&nbsp;Karin Breuer,&nbsp;Peter Carr,&nbsp;Marc-Danie Nazaire,&nbsp;Barbara Allen Hill,&nbsp;Yu Qian,&nbsp;Ted Liefeld,&nbsp;Michael Reich,&nbsp;Jill P Mesirov,&nbsp;Peter Wilkinson,&nbsp;Richard H Scheuermann,&nbsp;Rafick-Pierre Sekaly,&nbsp;Ryan R Brinkman\",\"doi\":\"10.1186/1751-0473-8-14\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Traditional flow cytometry data analysis is largely based on interactive and time consuming analysis of series two dimensional representations of up to 20 dimensional data. Recent technological advances have increased the amount of data generated by the technology and outpaced the development of data analysis approaches. While there are advanced tools available, including many R/BioConductor packages, these are only accessible programmatically and therefore out of reach for most experimentalists. GenePattern is a powerful genomic analysis platform with over 200 tools for analysis of gene expression, proteomics, and other data. A web-based interface provides easy access to these tools and allows the creation of automated analysis pipelines enabling reproducible research.</p><p><strong>Results: </strong>In order to bring advanced flow cytometry data analysis tools to experimentalists without programmatic skills, we developed the GenePattern Flow Cytometry Suite. It contains 34 open source GenePattern flow cytometry modules covering methods from basic processing of flow cytometry standard (i.e., FCS) files to advanced algorithms for automated identification of cell populations, normalization and quality assessment. Internally, these modules leverage from functionality developed in R/BioConductor. Using the GenePattern web-based interface, they can be connected to build analytical pipelines.</p><p><strong>Conclusions: </strong>GenePattern Flow Cytometry Suite brings advanced flow cytometry data analysis capabilities to users with minimal computer skills. Functionality previously available only to skilled bioinformaticians is now easily accessible from a web browser.</p>\",\"PeriodicalId\":35052,\"journal\":{\"name\":\"Source Code for Biology and Medicine\",\"volume\":\"8 1\",\"pages\":\"14\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1186/1751-0473-8-14\",\"citationCount\":\"23\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Source Code for Biology and Medicine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1186/1751-0473-8-14\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Decision Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Source Code for Biology and Medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/1751-0473-8-14","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Decision Sciences","Score":null,"Total":0}
引用次数: 23

摘要

背景:传统的流式细胞术数据分析主要基于对多达20维数据的系列二维表示的交互式和耗时的分析。最近的技术进步增加了该技术产生的数据量,并超过了数据分析方法的发展。虽然有先进的工具可用,包括许多R/BioConductor包,但这些工具只能通过编程访问,因此大多数实验者都无法访问。GenePattern是一个强大的基因组分析平台,拥有200多个用于分析基因表达、蛋白质组学和其他数据的工具。基于网络的界面提供了对这些工具的轻松访问,并允许创建自动化分析管道,从而实现可重复的研究。结果:为了给没有编程技能的实验者带来先进的流式细胞术数据分析工具,我们开发了GenePattern流式细胞仪套件。它包含34个开源GenePattern流式细胞仪模块,涵盖从流式细胞术标准(即FCS)文件的基本处理到细胞群自动识别、标准化和质量评估的高级算法的各种方法。在内部,这些模块利用R/BioConductor中开发的功能。使用基于GenePattern的界面,可以连接它们来构建分析管道。结论:GenePattern流式细胞仪套件为用户带来了先进的流式细胞术数据分析功能,只需最少的计算机技能。以前只有熟练的生物信息学家才能使用的功能现在可以从网络浏览器轻松访问。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

GenePattern flow cytometry suite.

GenePattern flow cytometry suite.

Background: Traditional flow cytometry data analysis is largely based on interactive and time consuming analysis of series two dimensional representations of up to 20 dimensional data. Recent technological advances have increased the amount of data generated by the technology and outpaced the development of data analysis approaches. While there are advanced tools available, including many R/BioConductor packages, these are only accessible programmatically and therefore out of reach for most experimentalists. GenePattern is a powerful genomic analysis platform with over 200 tools for analysis of gene expression, proteomics, and other data. A web-based interface provides easy access to these tools and allows the creation of automated analysis pipelines enabling reproducible research.

Results: In order to bring advanced flow cytometry data analysis tools to experimentalists without programmatic skills, we developed the GenePattern Flow Cytometry Suite. It contains 34 open source GenePattern flow cytometry modules covering methods from basic processing of flow cytometry standard (i.e., FCS) files to advanced algorithms for automated identification of cell populations, normalization and quality assessment. Internally, these modules leverage from functionality developed in R/BioConductor. Using the GenePattern web-based interface, they can be connected to build analytical pipelines.

Conclusions: GenePattern Flow Cytometry Suite brings advanced flow cytometry data analysis capabilities to users with minimal computer skills. Functionality previously available only to skilled bioinformaticians is now easily accessible from a web browser.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Source Code for Biology and Medicine
Source Code for Biology and Medicine Decision Sciences-Information Systems and Management
自引率
0.00%
发文量
0
期刊介绍: Source Code for Biology and Medicine is a peer-reviewed open access, online journal that publishes articles on source code employed over a wide range of applications in biology and medicine. The journal"s aim is to publish source code for distribution and use in the public domain in order to advance biological and medical research. Through this dissemination, it may be possible to shorten the time required for solving certain computational problems for which there is limited source code availability or resources.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信