Wim Maes, Tina Verschuere, Anaïs Van Hoylandt, Louis Boon, Stefaan Van Gool
{"title":"在小鼠实验性胶质瘤模型中,通过抗cd25治疗耗用调节性T细胞导致脑内非免疫抑制性骨髓细胞浸润。","authors":"Wim Maes, Tina Verschuere, Anaïs Van Hoylandt, Louis Boon, Stefaan Van Gool","doi":"10.1155/2013/952469","DOIUrl":null,"url":null,"abstract":"<p><p>The recruitment and activation of regulatory T cells (Tregs) in the micro-environment of malignant brain tumors has detrimental effects on antitumoral immune responses. Hence, local elimination of Tregs within the tumor micro-environment represents a highly valuable tool from both a fundamental and clinical perspective. In the syngeneic experimental GL261 murine glioma model, Tregs were prophylactically eliminated through treatment with PC61, an anti-CD25 mAb. This resulted in specific elimination of CD4+CD25hiFoxp3+ Treg within brain-infiltrating lymphocytes and complete protection against subsequent orthotopic GL261 tumor challenge. Interestingly, PC61-treated mice also showed a pronounced infiltration of CD11b+ myeloid cells in the brain. Phenotypically, these cells could not be considered as Gr-1+ myeloid-derived suppressor cells (MDSC) but were identified as F4/80+ macrophages and granulocytes.</p>","PeriodicalId":55254,"journal":{"name":"Clinical & Developmental Immunology","volume":"2013 ","pages":"952469"},"PeriodicalIF":0.0000,"publicationDate":"2013-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2013/952469","citationCount":"41","resultStr":"{\"title\":\"Depletion of regulatory T cells in a mouse experimental glioma model through anti-CD25 treatment results in the infiltration of non-immunosuppressive myeloid cells in the brain.\",\"authors\":\"Wim Maes, Tina Verschuere, Anaïs Van Hoylandt, Louis Boon, Stefaan Van Gool\",\"doi\":\"10.1155/2013/952469\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The recruitment and activation of regulatory T cells (Tregs) in the micro-environment of malignant brain tumors has detrimental effects on antitumoral immune responses. Hence, local elimination of Tregs within the tumor micro-environment represents a highly valuable tool from both a fundamental and clinical perspective. In the syngeneic experimental GL261 murine glioma model, Tregs were prophylactically eliminated through treatment with PC61, an anti-CD25 mAb. This resulted in specific elimination of CD4+CD25hiFoxp3+ Treg within brain-infiltrating lymphocytes and complete protection against subsequent orthotopic GL261 tumor challenge. Interestingly, PC61-treated mice also showed a pronounced infiltration of CD11b+ myeloid cells in the brain. Phenotypically, these cells could not be considered as Gr-1+ myeloid-derived suppressor cells (MDSC) but were identified as F4/80+ macrophages and granulocytes.</p>\",\"PeriodicalId\":55254,\"journal\":{\"name\":\"Clinical & Developmental Immunology\",\"volume\":\"2013 \",\"pages\":\"952469\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1155/2013/952469\",\"citationCount\":\"41\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Clinical & Developmental Immunology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2013/952469\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2013/4/23 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical & Developmental Immunology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2013/952469","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2013/4/23 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
Depletion of regulatory T cells in a mouse experimental glioma model through anti-CD25 treatment results in the infiltration of non-immunosuppressive myeloid cells in the brain.
The recruitment and activation of regulatory T cells (Tregs) in the micro-environment of malignant brain tumors has detrimental effects on antitumoral immune responses. Hence, local elimination of Tregs within the tumor micro-environment represents a highly valuable tool from both a fundamental and clinical perspective. In the syngeneic experimental GL261 murine glioma model, Tregs were prophylactically eliminated through treatment with PC61, an anti-CD25 mAb. This resulted in specific elimination of CD4+CD25hiFoxp3+ Treg within brain-infiltrating lymphocytes and complete protection against subsequent orthotopic GL261 tumor challenge. Interestingly, PC61-treated mice also showed a pronounced infiltration of CD11b+ myeloid cells in the brain. Phenotypically, these cells could not be considered as Gr-1+ myeloid-derived suppressor cells (MDSC) but were identified as F4/80+ macrophages and granulocytes.