{"title":"在羟考酮治疗的患者中,癌症恶病质通过降低CYP3A而不是CYP2D6来提高氧吗啡酮的血浆浓度。","authors":"Takafumi Naito, Masaki Tashiro, Takuya Ishida, Kazunori Ohnishi, Junichi Kawakami","doi":"10.1002/jcph.112","DOIUrl":null,"url":null,"abstract":"<p><p>This study evaluated the plasma concentrations of oxycodone and its demethylates and opioid-induced adverse effects based on cachexia stage in cancer patients receiving oxycodone. Seventy patients receiving oxycodone for cancer pain were enrolled. Cachexia was evaluated using the Glasgow Prognostic Score (GPS). Predose plasma concentrations of oxycodone, oxymorphone, and noroxycodone were determined at the titration dose. Opioid-induced adverse effects were monitored for 2 weeks after the titration. Plasma concentrations of oxycodone and oxymorphone but not noroxycodone in patients with a GPS of 2 were significantly higher than that with a GPS of 0. The metabolic ratios of noroxycodone but not oxymorphone to oxycodone in patients with a GPS of 1 and 2 were significantly lower than in those with a GPS of 0. A higher GPS was associated with a higher incidence of somnolence, while the GPS did not affect the incidence of vomiting. Plasma concentrations of oxycodone and oxymorphone were not associated with the incidence of adverse effects. In conclusion, cancer cachexia raised the plasma exposures of oxycodone and oxymorphone through the reduction of CYP3A but not CYP2D6. Although the cachexia elevated the incidence of somnolence, alterations in their pharmacokinetics were not associated with the incidence. </p>","PeriodicalId":48908,"journal":{"name":"Journal of Clinical Pharmacology","volume":"53 8","pages":"812-8"},"PeriodicalIF":2.9000,"publicationDate":"2013-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/jcph.112","citationCount":"17","resultStr":"{\"title\":\"Cancer cachexia raises the plasma concentration of oxymorphone through the reduction of CYP3A but not CYP2D6 in oxycodone-treated patients.\",\"authors\":\"Takafumi Naito, Masaki Tashiro, Takuya Ishida, Kazunori Ohnishi, Junichi Kawakami\",\"doi\":\"10.1002/jcph.112\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This study evaluated the plasma concentrations of oxycodone and its demethylates and opioid-induced adverse effects based on cachexia stage in cancer patients receiving oxycodone. Seventy patients receiving oxycodone for cancer pain were enrolled. Cachexia was evaluated using the Glasgow Prognostic Score (GPS). Predose plasma concentrations of oxycodone, oxymorphone, and noroxycodone were determined at the titration dose. Opioid-induced adverse effects were monitored for 2 weeks after the titration. Plasma concentrations of oxycodone and oxymorphone but not noroxycodone in patients with a GPS of 2 were significantly higher than that with a GPS of 0. The metabolic ratios of noroxycodone but not oxymorphone to oxycodone in patients with a GPS of 1 and 2 were significantly lower than in those with a GPS of 0. A higher GPS was associated with a higher incidence of somnolence, while the GPS did not affect the incidence of vomiting. Plasma concentrations of oxycodone and oxymorphone were not associated with the incidence of adverse effects. In conclusion, cancer cachexia raised the plasma exposures of oxycodone and oxymorphone through the reduction of CYP3A but not CYP2D6. Although the cachexia elevated the incidence of somnolence, alterations in their pharmacokinetics were not associated with the incidence. </p>\",\"PeriodicalId\":48908,\"journal\":{\"name\":\"Journal of Clinical Pharmacology\",\"volume\":\"53 8\",\"pages\":\"812-8\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2013-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1002/jcph.112\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Clinical Pharmacology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1002/jcph.112\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2013/6/3 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Clinical Pharmacology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/jcph.112","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2013/6/3 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
Cancer cachexia raises the plasma concentration of oxymorphone through the reduction of CYP3A but not CYP2D6 in oxycodone-treated patients.
This study evaluated the plasma concentrations of oxycodone and its demethylates and opioid-induced adverse effects based on cachexia stage in cancer patients receiving oxycodone. Seventy patients receiving oxycodone for cancer pain were enrolled. Cachexia was evaluated using the Glasgow Prognostic Score (GPS). Predose plasma concentrations of oxycodone, oxymorphone, and noroxycodone were determined at the titration dose. Opioid-induced adverse effects were monitored for 2 weeks after the titration. Plasma concentrations of oxycodone and oxymorphone but not noroxycodone in patients with a GPS of 2 were significantly higher than that with a GPS of 0. The metabolic ratios of noroxycodone but not oxymorphone to oxycodone in patients with a GPS of 1 and 2 were significantly lower than in those with a GPS of 0. A higher GPS was associated with a higher incidence of somnolence, while the GPS did not affect the incidence of vomiting. Plasma concentrations of oxycodone and oxymorphone were not associated with the incidence of adverse effects. In conclusion, cancer cachexia raised the plasma exposures of oxycodone and oxymorphone through the reduction of CYP3A but not CYP2D6. Although the cachexia elevated the incidence of somnolence, alterations in their pharmacokinetics were not associated with the incidence.
期刊介绍:
The Journal of Clinical Pharmacology (JCP) is a Human Pharmacology journal designed to provide physicians, pharmacists, research scientists, regulatory scientists, drug developers and academic colleagues a forum to present research in all aspects of Clinical Pharmacology. This includes original research in pharmacokinetics, pharmacogenetics/pharmacogenomics, pharmacometrics, physiologic based pharmacokinetic modeling, drug interactions, therapeutic drug monitoring, regulatory sciences (including unique methods of data analysis), special population studies, drug development, pharmacovigilance, womens’ health, pediatric pharmacology, and pharmacodynamics. Additionally, JCP publishes review articles, commentaries and educational manuscripts. The Journal also serves as an instrument to disseminate Public Policy statements from the American College of Clinical Pharmacology.