超越程度、集线器和无标度网络的系统生物学:复杂网络中多重指标的案例。

Systems and Synthetic Biology Pub Date : 2012-06-01 Epub Date: 2012-05-29 DOI:10.1007/s11693-012-9094-y
Soumen Roy
{"title":"超越程度、集线器和无标度网络的系统生物学:复杂网络中多重指标的案例。","authors":"Soumen Roy","doi":"10.1007/s11693-012-9094-y","DOIUrl":null,"url":null,"abstract":"<p><p>Modeling and topological analysis of networks in biological and other complex systems, must venture beyond the limited consideration of very few network metrics like degree, betweenness or assortativity. A proper identification of informative and redundant entities from many different metrics, using recently demonstrated techniques, is essential. A holistic comparison of networks and growth models is best achieved only with the use of such methods.</p>","PeriodicalId":22161,"journal":{"name":"Systems and Synthetic Biology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2012-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s11693-012-9094-y","citationCount":"31","resultStr":"{\"title\":\"Systems biology beyond degree, hubs and scale-free networks: the case for multiple metrics in complex networks.\",\"authors\":\"Soumen Roy\",\"doi\":\"10.1007/s11693-012-9094-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Modeling and topological analysis of networks in biological and other complex systems, must venture beyond the limited consideration of very few network metrics like degree, betweenness or assortativity. A proper identification of informative and redundant entities from many different metrics, using recently demonstrated techniques, is essential. A holistic comparison of networks and growth models is best achieved only with the use of such methods.</p>\",\"PeriodicalId\":22161,\"journal\":{\"name\":\"Systems and Synthetic Biology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/s11693-012-9094-y\",\"citationCount\":\"31\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Systems and Synthetic Biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s11693-012-9094-y\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2012/5/29 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Systems and Synthetic Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s11693-012-9094-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2012/5/29 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 31

摘要

生物和其他复杂系统中网络的建模和拓扑分析,必须冒险超越有限的考虑,如程度,中间性或分类性。必须使用最近演示的技术,从许多不同的度量标准中正确识别信息丰富和冗余的实体。只有使用这些方法,才能最好地实现网络和增长模型的整体比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Systems biology beyond degree, hubs and scale-free networks: the case for multiple metrics in complex networks.

Modeling and topological analysis of networks in biological and other complex systems, must venture beyond the limited consideration of very few network metrics like degree, betweenness or assortativity. A proper identification of informative and redundant entities from many different metrics, using recently demonstrated techniques, is essential. A holistic comparison of networks and growth models is best achieved only with the use of such methods.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信