纳米铂修饰二氧化钛电极的电化学和微观表征

IF 4.5 3区 化学 Q1 Chemical Engineering
Francisco A. Filippin , Mariana I. Rojas , Lucía B. Avalle
{"title":"纳米铂修饰二氧化钛电极的电化学和微观表征","authors":"Francisco A. Filippin ,&nbsp;Mariana I. Rojas ,&nbsp;Lucía B. Avalle","doi":"10.1016/j.jelechem.2023.117717","DOIUrl":null,"url":null,"abstract":"<div><p>This study investigates glass/Ti/Pt/TiO<sub>2</sub> surfaces, wherein Pt nanoparticles (NPs) were potentiostatically deposited with an amount of Pt that varies based on deposition time. The size and distribution of NPs were analyzed by scanning electron microscopy (SEM). Subsequently, a thicker titanium dioxide film was grown via anodization. Topography and roughness were examined by atomic force microscopy (AFM). Remarkably, TiO<sub>2</sub> grows independently of Pt NPs and remains stable under working conditions, including acid, neutral, and alkaline media. Under steady-state conditions, the open circuit potentials (OCPs) of the modified semiconductor/electrolyte interfaces corresponding to 1, 5, and 10 s of electrodeposited Pt, showed a shift of 167 mV, 42 mV, and 24 mV toward more positive values, respectively. Notably, these surfaces exhibit the activity of a Pt quasi-electrode and the band structure of a titanium dioxide semiconductor, making them ideal for use as photoanodes. In addition, it can be highlighted that the methodology employed in the preparation of the surfaces allows for reproducibility.</p></div>","PeriodicalId":50545,"journal":{"name":"Journal of Electroanalytical Chemistry","volume":"946 ","pages":"Article 117717"},"PeriodicalIF":4.5000,"publicationDate":"2023-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Electrochemical and microscopic characterization of titanium dioxide electrodes modified with platinum nanoparticles\",\"authors\":\"Francisco A. Filippin ,&nbsp;Mariana I. Rojas ,&nbsp;Lucía B. Avalle\",\"doi\":\"10.1016/j.jelechem.2023.117717\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This study investigates glass/Ti/Pt/TiO<sub>2</sub> surfaces, wherein Pt nanoparticles (NPs) were potentiostatically deposited with an amount of Pt that varies based on deposition time. The size and distribution of NPs were analyzed by scanning electron microscopy (SEM). Subsequently, a thicker titanium dioxide film was grown via anodization. Topography and roughness were examined by atomic force microscopy (AFM). Remarkably, TiO<sub>2</sub> grows independently of Pt NPs and remains stable under working conditions, including acid, neutral, and alkaline media. Under steady-state conditions, the open circuit potentials (OCPs) of the modified semiconductor/electrolyte interfaces corresponding to 1, 5, and 10 s of electrodeposited Pt, showed a shift of 167 mV, 42 mV, and 24 mV toward more positive values, respectively. Notably, these surfaces exhibit the activity of a Pt quasi-electrode and the band structure of a titanium dioxide semiconductor, making them ideal for use as photoanodes. In addition, it can be highlighted that the methodology employed in the preparation of the surfaces allows for reproducibility.</p></div>\",\"PeriodicalId\":50545,\"journal\":{\"name\":\"Journal of Electroanalytical Chemistry\",\"volume\":\"946 \",\"pages\":\"Article 117717\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2023-08-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Electroanalytical Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1572665723005775\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Chemical Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Electroanalytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1572665723005775","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Chemical Engineering","Score":null,"Total":0}
引用次数: 0

摘要

本研究研究了玻璃/Ti/Pt/TiO2表面,其中Pt纳米颗粒(NPs)被电位沉积,其数量根据沉积时间而变化。用扫描电镜(SEM)分析了NPs的大小和分布。随后,通过阳极氧化生长出较厚的二氧化钛膜。采用原子力显微镜(AFM)检测其形貌和粗糙度。值得注意的是,TiO2独立于Pt NPs生长,并在酸性、中性和碱性介质下保持稳定。在稳态条件下,修饰后的半导体/电解质界面的开路电位(ocp)分别在电沉积Pt的1、5和10 s时呈现出167 mV、42 mV和24 mV的正向位移。值得注意的是,这些表面表现出铂类电极的活性和二氧化钛半导体的能带结构,使它们成为理想的光阳极。此外,可以强调的是,在制备表面时采用的方法允许再现性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Electrochemical and microscopic characterization of titanium dioxide electrodes modified with platinum nanoparticles

Electrochemical and microscopic characterization of titanium dioxide electrodes modified with platinum nanoparticles

This study investigates glass/Ti/Pt/TiO2 surfaces, wherein Pt nanoparticles (NPs) were potentiostatically deposited with an amount of Pt that varies based on deposition time. The size and distribution of NPs were analyzed by scanning electron microscopy (SEM). Subsequently, a thicker titanium dioxide film was grown via anodization. Topography and roughness were examined by atomic force microscopy (AFM). Remarkably, TiO2 grows independently of Pt NPs and remains stable under working conditions, including acid, neutral, and alkaline media. Under steady-state conditions, the open circuit potentials (OCPs) of the modified semiconductor/electrolyte interfaces corresponding to 1, 5, and 10 s of electrodeposited Pt, showed a shift of 167 mV, 42 mV, and 24 mV toward more positive values, respectively. Notably, these surfaces exhibit the activity of a Pt quasi-electrode and the band structure of a titanium dioxide semiconductor, making them ideal for use as photoanodes. In addition, it can be highlighted that the methodology employed in the preparation of the surfaces allows for reproducibility.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Electroanalytical Chemistry
Journal of Electroanalytical Chemistry Chemical Engineering-General Chemical Engineering
CiteScore
7.50
自引率
6.70%
发文量
912
审稿时长
>12 weeks
期刊介绍: The Journal of Electroanalytical Chemistry is the foremost international journal devoted to the interdisciplinary subject of electrochemistry in all its aspects, theoretical as well as applied. Electrochemistry is a wide ranging area that is in a state of continuous evolution. Rather than compiling a long list of topics covered by the Journal, the editors would like to draw particular attention to the key issues of novelty, topicality and quality. Papers should present new and interesting electrochemical science in a way that is accessible to the reader. The presentation and discussion should be at a level that is consistent with the international status of the Journal. Reports describing the application of well-established techniques to problems that are essentially technical will not be accepted. Similarly, papers that report observations but fail to provide adequate interpretation will be rejected by the Editors. Papers dealing with technical electrochemistry should be submitted to other specialist journals unless the authors can show that their work provides substantially new insights into electrochemical processes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信