Alice King, Swathi Balaji, Emily Marsh, Louis D Le, Aimen F Shaaban, Timothy M Crombleholme, Sundeep G Keswani
{"title":"白细胞介素-10通过stat3依赖机制调节胎儿富含透明质酸的细胞外基质。","authors":"Alice King, Swathi Balaji, Emily Marsh, Louis D Le, Aimen F Shaaban, Timothy M Crombleholme, Sundeep G Keswani","doi":"10.1016/j.jss.2013.04.009","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The midgestational fetus is capable of regenerative healing. We have recently demonstrated a novel role for the anti-inflammatory cytokine interleukin 10 (IL-10) as a regulator of hyaluronan (HA) in the extracellular matrix. The signaling pathway of IL-10 has been studied in monocytes but is unknown in dermal fibroblasts. We hypothesized IL-10 signals through its primary receptor, IL-10R1, to activate STAT3, resulting in HA synthesis.</p><p><strong>Methods: </strong>Murine midgestational (E14.5) fetal fibroblasts were evaluated in vitro. Pericellular matrix was quantified using a particle exclusion assay. STAT3 levels and cellular localization were evaluated by Western blot/band densitometry and immunocytochemistry/confocal microscopy. HA levels were quantified by enzyme-linked immunosorbent assay. The effects of IL-10R1 signal blockade by a neutralizing antibody and STAT3 inhibition were evaluated. An ex vivo midgestation fetal forearm culture incisional wound model in control and transgenic IL-10-/- mice was used to evaluate the role of STAT3 on the extracellular matrix.</p><p><strong>Results: </strong>Fetal fibroblasts produce a robust hyaluronan-rich pericellular matrix that is IL-10R1 and STAT3 dependent. Inhibition of IL-10R1 signaling results in decreased phosphorylated STAT3 levels and inhibition of nuclear localization. Inhibition of STAT3 results in decreased HA production. At day 3, midgestation fetal wounds have efficient re-epithelialization, which is significantly slowed in IL-10-/- wounds at the same gestation and with inhibition of STAT3.</p><p><strong>Conclusions: </strong>Our data demonstrate that IL-10 regulates HA synthesis through its primary receptor IL-10R1 and STAT3 activation. This supports a novel nonimmunoregulatory mechanism of IL-10 in its role in fetal regenerative wound healing.</p>","PeriodicalId":191568,"journal":{"name":"The Journal of surgical research","volume":" ","pages":"671-7"},"PeriodicalIF":0.0000,"publicationDate":"2013-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.jss.2013.04.009","citationCount":"28","resultStr":"{\"title\":\"Interleukin-10 regulates the fetal hyaluronan-rich extracellular matrix via a STAT3-dependent mechanism.\",\"authors\":\"Alice King, Swathi Balaji, Emily Marsh, Louis D Le, Aimen F Shaaban, Timothy M Crombleholme, Sundeep G Keswani\",\"doi\":\"10.1016/j.jss.2013.04.009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>The midgestational fetus is capable of regenerative healing. We have recently demonstrated a novel role for the anti-inflammatory cytokine interleukin 10 (IL-10) as a regulator of hyaluronan (HA) in the extracellular matrix. The signaling pathway of IL-10 has been studied in monocytes but is unknown in dermal fibroblasts. We hypothesized IL-10 signals through its primary receptor, IL-10R1, to activate STAT3, resulting in HA synthesis.</p><p><strong>Methods: </strong>Murine midgestational (E14.5) fetal fibroblasts were evaluated in vitro. Pericellular matrix was quantified using a particle exclusion assay. STAT3 levels and cellular localization were evaluated by Western blot/band densitometry and immunocytochemistry/confocal microscopy. HA levels were quantified by enzyme-linked immunosorbent assay. The effects of IL-10R1 signal blockade by a neutralizing antibody and STAT3 inhibition were evaluated. An ex vivo midgestation fetal forearm culture incisional wound model in control and transgenic IL-10-/- mice was used to evaluate the role of STAT3 on the extracellular matrix.</p><p><strong>Results: </strong>Fetal fibroblasts produce a robust hyaluronan-rich pericellular matrix that is IL-10R1 and STAT3 dependent. Inhibition of IL-10R1 signaling results in decreased phosphorylated STAT3 levels and inhibition of nuclear localization. Inhibition of STAT3 results in decreased HA production. At day 3, midgestation fetal wounds have efficient re-epithelialization, which is significantly slowed in IL-10-/- wounds at the same gestation and with inhibition of STAT3.</p><p><strong>Conclusions: </strong>Our data demonstrate that IL-10 regulates HA synthesis through its primary receptor IL-10R1 and STAT3 activation. This supports a novel nonimmunoregulatory mechanism of IL-10 in its role in fetal regenerative wound healing.</p>\",\"PeriodicalId\":191568,\"journal\":{\"name\":\"The Journal of surgical research\",\"volume\":\" \",\"pages\":\"671-7\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.jss.2013.04.009\",\"citationCount\":\"28\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of surgical research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jss.2013.04.009\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2013/4/24 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of surgical research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.jss.2013.04.009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2013/4/24 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
Interleukin-10 regulates the fetal hyaluronan-rich extracellular matrix via a STAT3-dependent mechanism.
Background: The midgestational fetus is capable of regenerative healing. We have recently demonstrated a novel role for the anti-inflammatory cytokine interleukin 10 (IL-10) as a regulator of hyaluronan (HA) in the extracellular matrix. The signaling pathway of IL-10 has been studied in monocytes but is unknown in dermal fibroblasts. We hypothesized IL-10 signals through its primary receptor, IL-10R1, to activate STAT3, resulting in HA synthesis.
Methods: Murine midgestational (E14.5) fetal fibroblasts were evaluated in vitro. Pericellular matrix was quantified using a particle exclusion assay. STAT3 levels and cellular localization were evaluated by Western blot/band densitometry and immunocytochemistry/confocal microscopy. HA levels were quantified by enzyme-linked immunosorbent assay. The effects of IL-10R1 signal blockade by a neutralizing antibody and STAT3 inhibition were evaluated. An ex vivo midgestation fetal forearm culture incisional wound model in control and transgenic IL-10-/- mice was used to evaluate the role of STAT3 on the extracellular matrix.
Results: Fetal fibroblasts produce a robust hyaluronan-rich pericellular matrix that is IL-10R1 and STAT3 dependent. Inhibition of IL-10R1 signaling results in decreased phosphorylated STAT3 levels and inhibition of nuclear localization. Inhibition of STAT3 results in decreased HA production. At day 3, midgestation fetal wounds have efficient re-epithelialization, which is significantly slowed in IL-10-/- wounds at the same gestation and with inhibition of STAT3.
Conclusions: Our data demonstrate that IL-10 regulates HA synthesis through its primary receptor IL-10R1 and STAT3 activation. This supports a novel nonimmunoregulatory mechanism of IL-10 in its role in fetal regenerative wound healing.