Joseph D Lamplot, Jiaqiang Qin, Guoxin Nan, Jinhua Wang, Xing Liu, Liangjun Yin, Justin Tomal, Ruidong Li, Wei Shui, Hongyu Zhang, Stephanie H Kim, Wenwen Zhang, Jiye Zhang, Yuhan Kong, Sahitya Denduluri, Mary Rose Rogers, Abdullah Pratt, Rex C Haydon, Hue H Luu, Jovito Angeles, Lewis L Shi, Tong-Chuan He
{"title":"干细胞分化和成骨过程中的 BMP9 信号传导","authors":"Joseph D Lamplot, Jiaqiang Qin, Guoxin Nan, Jinhua Wang, Xing Liu, Liangjun Yin, Justin Tomal, Ruidong Li, Wei Shui, Hongyu Zhang, Stephanie H Kim, Wenwen Zhang, Jiye Zhang, Yuhan Kong, Sahitya Denduluri, Mary Rose Rogers, Abdullah Pratt, Rex C Haydon, Hue H Luu, Jovito Angeles, Lewis L Shi, Tong-Chuan He","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Bone morphogenetic proteins (BMPs) are members of the TGF-β superfamily and play a critical role in skeletal development, bone formation and stem cell differentiation. Disruptions in BMP signaling result in a variety of skeletal and extraskeletal anomalies. BMP9 is a poorly characterized member of the BMP family and is among the most osteogenic BMPs, promoting osteoblastic differentiation of mesenchymal stem cells (MSCs) both in vitro and in vivo. Recent findings from various in vivo and molecular studies strongly suggest that the mechanisms governing BMP9-mediated osteoinduction differ from other osteogenic BMPs. Many signaling pathways with diverse functions have been found to play a role in BMP9-mediated osteogenesis. Several of these pathways are also critical in the differentiation of other cell lineages, including adipocytes and chondrocytes. While BMP9 is known to be a potent osteogenic factor, it also influences several other pathways including cancer development, angiogenesis and myogenesis. Although BMP9 has been demonstrated as one of the most osteogenic BMPs, relatively little is known about the specific mechanisms responsible for these effects. BMP9 has demonstrated efficacy in promoting spinal fusion and bony non-union repair in animal models, demonstrating great translational promise. This review aims to summarize our current knowledge of BMP9-mediated osteogenesis by presenting recently completed work which may help us to further elucidate these pathways.</p>","PeriodicalId":7657,"journal":{"name":"American journal of stem cells","volume":"2 1","pages":"1-21"},"PeriodicalIF":1.5000,"publicationDate":"2013-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3636726/pdf/ajsc0002-0001.pdf","citationCount":"0","resultStr":"{\"title\":\"BMP9 signaling in stem cell differentiation and osteogenesis.\",\"authors\":\"Joseph D Lamplot, Jiaqiang Qin, Guoxin Nan, Jinhua Wang, Xing Liu, Liangjun Yin, Justin Tomal, Ruidong Li, Wei Shui, Hongyu Zhang, Stephanie H Kim, Wenwen Zhang, Jiye Zhang, Yuhan Kong, Sahitya Denduluri, Mary Rose Rogers, Abdullah Pratt, Rex C Haydon, Hue H Luu, Jovito Angeles, Lewis L Shi, Tong-Chuan He\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Bone morphogenetic proteins (BMPs) are members of the TGF-β superfamily and play a critical role in skeletal development, bone formation and stem cell differentiation. Disruptions in BMP signaling result in a variety of skeletal and extraskeletal anomalies. BMP9 is a poorly characterized member of the BMP family and is among the most osteogenic BMPs, promoting osteoblastic differentiation of mesenchymal stem cells (MSCs) both in vitro and in vivo. Recent findings from various in vivo and molecular studies strongly suggest that the mechanisms governing BMP9-mediated osteoinduction differ from other osteogenic BMPs. Many signaling pathways with diverse functions have been found to play a role in BMP9-mediated osteogenesis. Several of these pathways are also critical in the differentiation of other cell lineages, including adipocytes and chondrocytes. While BMP9 is known to be a potent osteogenic factor, it also influences several other pathways including cancer development, angiogenesis and myogenesis. Although BMP9 has been demonstrated as one of the most osteogenic BMPs, relatively little is known about the specific mechanisms responsible for these effects. BMP9 has demonstrated efficacy in promoting spinal fusion and bony non-union repair in animal models, demonstrating great translational promise. This review aims to summarize our current knowledge of BMP9-mediated osteogenesis by presenting recently completed work which may help us to further elucidate these pathways.</p>\",\"PeriodicalId\":7657,\"journal\":{\"name\":\"American journal of stem cells\",\"volume\":\"2 1\",\"pages\":\"1-21\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2013-03-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3636726/pdf/ajsc0002-0001.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"American journal of stem cells\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2013/1/1 0:00:00\",\"PubModel\":\"Print\",\"JCR\":\"Q4\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"American journal of stem cells","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2013/1/1 0:00:00","PubModel":"Print","JCR":"Q4","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
BMP9 signaling in stem cell differentiation and osteogenesis.
Bone morphogenetic proteins (BMPs) are members of the TGF-β superfamily and play a critical role in skeletal development, bone formation and stem cell differentiation. Disruptions in BMP signaling result in a variety of skeletal and extraskeletal anomalies. BMP9 is a poorly characterized member of the BMP family and is among the most osteogenic BMPs, promoting osteoblastic differentiation of mesenchymal stem cells (MSCs) both in vitro and in vivo. Recent findings from various in vivo and molecular studies strongly suggest that the mechanisms governing BMP9-mediated osteoinduction differ from other osteogenic BMPs. Many signaling pathways with diverse functions have been found to play a role in BMP9-mediated osteogenesis. Several of these pathways are also critical in the differentiation of other cell lineages, including adipocytes and chondrocytes. While BMP9 is known to be a potent osteogenic factor, it also influences several other pathways including cancer development, angiogenesis and myogenesis. Although BMP9 has been demonstrated as one of the most osteogenic BMPs, relatively little is known about the specific mechanisms responsible for these effects. BMP9 has demonstrated efficacy in promoting spinal fusion and bony non-union repair in animal models, demonstrating great translational promise. This review aims to summarize our current knowledge of BMP9-mediated osteogenesis by presenting recently completed work which may help us to further elucidate these pathways.