D Lee, M J Desmond, S A Fraser, M Katerelos, K Gleich, S F Berkovic, D A Power
{"title":"肾素分泌颗粒中跨膜溶酶体蛋白 SCARB2/Limp-2 的表达控制着肾素的释放。","authors":"D Lee, M J Desmond, S A Fraser, M Katerelos, K Gleich, S F Berkovic, D A Power","doi":"10.1159/000350737","DOIUrl":null,"url":null,"abstract":"<p><strong>Background/aims: </strong>Renin processing and storage is believed to occur in lysosome-like structures in the afferent arteriole. SCARB2/Limp-2 is a transmembrane lysosomal protein responsible for the intracellular trafficking of β-glucocerebrosidase. This study aimed to confirm the expression of SCARB2/Limp-2 in renin secretory granules, and explore its role in renin processing and secretion.</p><p><strong>Methods: </strong>Co-localisation studies of (pro)renin with lysosomal membrane proteins, SCARB2/Limp-2, LAMP-1 and LAMP-2, were performed in mouse and human kidney sections. Intrarenal expression and secretion of (pro)renin in wild-type (WT) and Limp-2(-/-) mice were compared with and without stimulation.</p><p><strong>Results: </strong>SCARB2/Limp-2, LAMP-1 and LAMP-2 co-localised with (pro)- renin in mouse and human kidney. Plasma renin concentration was increased in Limp-2(-/-) mice when compared to WT littermates. No change in (pro)renin expression, however, was observed in Limp-2(-/-) mouse kidney cortex by immunofluorescence microscopy, Western blotting, quantitative RT-PCR or the ultrastructural appearance of renin secretory granules. Acute stimulation of renin release by isoprenaline or hydralazine was similar in WT and Limp-2(-/-) mice. Following chronic salt restriction, however, immunofluorescence microscopy showed less (pro)renin expressed in Limp-2(-/-) compared with WT mouse kidneys, and there was significantly less prorenin but not renin by Western blotting in Limp-2(-/-) mouse kidney cortex, despite no difference in circulating renin levels.</p><p><strong>Conclusion: </strong>Renin secretory granules possess integral lysosomal proteins, confirming that they are indeed modified lysosomes. Limp-2 deficiency leads to a minor increase in circulating renin. Limp-2, however, is not required for acute or chronic stimulation of renin release.</p>","PeriodicalId":18993,"journal":{"name":"Nephron Experimental Nephrology","volume":"122 3-4","pages":"103-13"},"PeriodicalIF":0.0000,"publicationDate":"2012-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1159/000350737","citationCount":"6","resultStr":"{\"title\":\"Expression of the transmembrane lysosomal protein SCARB2/Limp-2 in renin secretory granules controls renin release.\",\"authors\":\"D Lee, M J Desmond, S A Fraser, M Katerelos, K Gleich, S F Berkovic, D A Power\",\"doi\":\"10.1159/000350737\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background/aims: </strong>Renin processing and storage is believed to occur in lysosome-like structures in the afferent arteriole. SCARB2/Limp-2 is a transmembrane lysosomal protein responsible for the intracellular trafficking of β-glucocerebrosidase. This study aimed to confirm the expression of SCARB2/Limp-2 in renin secretory granules, and explore its role in renin processing and secretion.</p><p><strong>Methods: </strong>Co-localisation studies of (pro)renin with lysosomal membrane proteins, SCARB2/Limp-2, LAMP-1 and LAMP-2, were performed in mouse and human kidney sections. Intrarenal expression and secretion of (pro)renin in wild-type (WT) and Limp-2(-/-) mice were compared with and without stimulation.</p><p><strong>Results: </strong>SCARB2/Limp-2, LAMP-1 and LAMP-2 co-localised with (pro)- renin in mouse and human kidney. Plasma renin concentration was increased in Limp-2(-/-) mice when compared to WT littermates. No change in (pro)renin expression, however, was observed in Limp-2(-/-) mouse kidney cortex by immunofluorescence microscopy, Western blotting, quantitative RT-PCR or the ultrastructural appearance of renin secretory granules. Acute stimulation of renin release by isoprenaline or hydralazine was similar in WT and Limp-2(-/-) mice. Following chronic salt restriction, however, immunofluorescence microscopy showed less (pro)renin expressed in Limp-2(-/-) compared with WT mouse kidneys, and there was significantly less prorenin but not renin by Western blotting in Limp-2(-/-) mouse kidney cortex, despite no difference in circulating renin levels.</p><p><strong>Conclusion: </strong>Renin secretory granules possess integral lysosomal proteins, confirming that they are indeed modified lysosomes. Limp-2 deficiency leads to a minor increase in circulating renin. Limp-2, however, is not required for acute or chronic stimulation of renin release.</p>\",\"PeriodicalId\":18993,\"journal\":{\"name\":\"Nephron Experimental Nephrology\",\"volume\":\"122 3-4\",\"pages\":\"103-13\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1159/000350737\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nephron Experimental Nephrology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1159/000350737\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2013/4/26 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nephron Experimental Nephrology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1159/000350737","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2013/4/26 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
Expression of the transmembrane lysosomal protein SCARB2/Limp-2 in renin secretory granules controls renin release.
Background/aims: Renin processing and storage is believed to occur in lysosome-like structures in the afferent arteriole. SCARB2/Limp-2 is a transmembrane lysosomal protein responsible for the intracellular trafficking of β-glucocerebrosidase. This study aimed to confirm the expression of SCARB2/Limp-2 in renin secretory granules, and explore its role in renin processing and secretion.
Methods: Co-localisation studies of (pro)renin with lysosomal membrane proteins, SCARB2/Limp-2, LAMP-1 and LAMP-2, were performed in mouse and human kidney sections. Intrarenal expression and secretion of (pro)renin in wild-type (WT) and Limp-2(-/-) mice were compared with and without stimulation.
Results: SCARB2/Limp-2, LAMP-1 and LAMP-2 co-localised with (pro)- renin in mouse and human kidney. Plasma renin concentration was increased in Limp-2(-/-) mice when compared to WT littermates. No change in (pro)renin expression, however, was observed in Limp-2(-/-) mouse kidney cortex by immunofluorescence microscopy, Western blotting, quantitative RT-PCR or the ultrastructural appearance of renin secretory granules. Acute stimulation of renin release by isoprenaline or hydralazine was similar in WT and Limp-2(-/-) mice. Following chronic salt restriction, however, immunofluorescence microscopy showed less (pro)renin expressed in Limp-2(-/-) compared with WT mouse kidneys, and there was significantly less prorenin but not renin by Western blotting in Limp-2(-/-) mouse kidney cortex, despite no difference in circulating renin levels.
Conclusion: Renin secretory granules possess integral lysosomal proteins, confirming that they are indeed modified lysosomes. Limp-2 deficiency leads to a minor increase in circulating renin. Limp-2, however, is not required for acute or chronic stimulation of renin release.