Ola Srour , Konstantinos E. Kakosimos , Luc N. Vechot
{"title":"建立一种高保真模型,用于识别由埋地管道释放引起的地下气体流动状态","authors":"Ola Srour , Konstantinos E. Kakosimos , Luc N. Vechot","doi":"10.1016/j.jngse.2022.104832","DOIUrl":null,"url":null,"abstract":"<div><p>The quantitative characterization of underground transport phenomena remains challenging due to the complex behavior of the gas movement in soil. Conversely, this inhibits the accurate prediction of the risk arising from the underground transport of hazardous materials. This work proposed and qualitatively evaluated a computational model that spans a wide range of underground gas flow regimes, ranging from gas migration, to ground uplift, and crater formation, depending on the release characteristics. The model followed the multiphase Eulerian approach and adopted the standard k-ω turbulence model and the kinetic theory of granular flow for the ground description with the Syamlal-O’Brien granular viscosity expression. The model's optimum configuration was checked against experimental data using a new mechanistic approach to link the qualitative observations with quantitative model outputs. The effect of pipeline pressure, burial depth, and release orientation on the regime was studied and the outcomes were utilized to enhance a literature nomograph for the flow regime identification. Emphasis was given to fill in the literature gaps and improve the delineation of the boundaries between the regimes rather than deriving specific quantities. The resulted nomograph is a cost-effective screening tool to identify the regime and select among the available strategies of risk assessment.</p></div>","PeriodicalId":372,"journal":{"name":"Journal of Natural Gas Science and Engineering","volume":"108 ","pages":"Article 104832"},"PeriodicalIF":4.9000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Toward a high-fidelity model for the identification of underground gas flow regimes resulting from buried pipeline releases\",\"authors\":\"Ola Srour , Konstantinos E. Kakosimos , Luc N. Vechot\",\"doi\":\"10.1016/j.jngse.2022.104832\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The quantitative characterization of underground transport phenomena remains challenging due to the complex behavior of the gas movement in soil. Conversely, this inhibits the accurate prediction of the risk arising from the underground transport of hazardous materials. This work proposed and qualitatively evaluated a computational model that spans a wide range of underground gas flow regimes, ranging from gas migration, to ground uplift, and crater formation, depending on the release characteristics. The model followed the multiphase Eulerian approach and adopted the standard k-ω turbulence model and the kinetic theory of granular flow for the ground description with the Syamlal-O’Brien granular viscosity expression. The model's optimum configuration was checked against experimental data using a new mechanistic approach to link the qualitative observations with quantitative model outputs. The effect of pipeline pressure, burial depth, and release orientation on the regime was studied and the outcomes were utilized to enhance a literature nomograph for the flow regime identification. Emphasis was given to fill in the literature gaps and improve the delineation of the boundaries between the regimes rather than deriving specific quantities. The resulted nomograph is a cost-effective screening tool to identify the regime and select among the available strategies of risk assessment.</p></div>\",\"PeriodicalId\":372,\"journal\":{\"name\":\"Journal of Natural Gas Science and Engineering\",\"volume\":\"108 \",\"pages\":\"Article 104832\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Natural Gas Science and Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1875510022004188\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Natural Gas Science and Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1875510022004188","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Toward a high-fidelity model for the identification of underground gas flow regimes resulting from buried pipeline releases
The quantitative characterization of underground transport phenomena remains challenging due to the complex behavior of the gas movement in soil. Conversely, this inhibits the accurate prediction of the risk arising from the underground transport of hazardous materials. This work proposed and qualitatively evaluated a computational model that spans a wide range of underground gas flow regimes, ranging from gas migration, to ground uplift, and crater formation, depending on the release characteristics. The model followed the multiphase Eulerian approach and adopted the standard k-ω turbulence model and the kinetic theory of granular flow for the ground description with the Syamlal-O’Brien granular viscosity expression. The model's optimum configuration was checked against experimental data using a new mechanistic approach to link the qualitative observations with quantitative model outputs. The effect of pipeline pressure, burial depth, and release orientation on the regime was studied and the outcomes were utilized to enhance a literature nomograph for the flow regime identification. Emphasis was given to fill in the literature gaps and improve the delineation of the boundaries between the regimes rather than deriving specific quantities. The resulted nomograph is a cost-effective screening tool to identify the regime and select among the available strategies of risk assessment.
期刊介绍:
The objective of the Journal of Natural Gas Science & Engineering is to bridge the gap between the engineering and the science of natural gas by publishing explicitly written articles intelligible to scientists and engineers working in any field of natural gas science and engineering from the reservoir to the market.
An attempt is made in all issues to balance the subject matter and to appeal to a broad readership. The Journal of Natural Gas Science & Engineering covers the fields of natural gas exploration, production, processing and transmission in its broadest possible sense. Topics include: origin and accumulation of natural gas; natural gas geochemistry; gas-reservoir engineering; well logging, testing and evaluation; mathematical modelling; enhanced gas recovery; thermodynamics and phase behaviour, gas-reservoir modelling and simulation; natural gas production engineering; primary and enhanced production from unconventional gas resources, subsurface issues related to coalbed methane, tight gas, shale gas, and hydrate production, formation evaluation; exploration methods, multiphase flow and flow assurance issues, novel processing (e.g., subsea) techniques, raw gas transmission methods, gas processing/LNG technologies, sales gas transmission and storage. The Journal of Natural Gas Science & Engineering will also focus on economical, environmental, management and safety issues related to natural gas production, processing and transportation.