基于多图集的分割中的空间偏差。

Hongzhi Wang, Paul A Yushkevich
{"title":"基于多图集的分割中的空间偏差。","authors":"Hongzhi Wang, Paul A Yushkevich","doi":"10.1109/CVPR.2012.6247765","DOIUrl":null,"url":null,"abstract":"<p><p>Multi-atlas segmentation has been widely applied in medical image analysis. With deformable registration, this technique realizes label transfer from pre-labeled atlases to unknown images. When deformable registration produces error, label fusion that combines results produced by multiple atlases is an effective way for reducing segmentation errors. Among the existing label fusion strategies, similarity-weighted voting strategies with spatially varying weight distributions have been particularly successful. We show that, weighted voting based label fusion produces a spatial bias that under-segments structures with convex shapes. The bias can be approximated as applying spatial convolution to the ground truth spatial label probability maps, where the convolution kernel combines the distribution of residual registration errors and the function producing similarity-based voting weights. To reduce this bias, we apply a standard spatial deconvolution to the spatial probability maps obtained from weighted voting. In a brain image segmentation experiment, we demonstrate the spatial bias and show that our technique substantially reduces this spatial bias.</p>","PeriodicalId":89346,"journal":{"name":"Conference on Computer Vision and Pattern Recognition Workshops. IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Workshops","volume":"2012 ","pages":"909-916"},"PeriodicalIF":0.0000,"publicationDate":"2012-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3589983/pdf/nihms-366474.pdf","citationCount":"0","resultStr":"{\"title\":\"Spatial Bias in Multi-Atlas Based Segmentation.\",\"authors\":\"Hongzhi Wang, Paul A Yushkevich\",\"doi\":\"10.1109/CVPR.2012.6247765\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Multi-atlas segmentation has been widely applied in medical image analysis. With deformable registration, this technique realizes label transfer from pre-labeled atlases to unknown images. When deformable registration produces error, label fusion that combines results produced by multiple atlases is an effective way for reducing segmentation errors. Among the existing label fusion strategies, similarity-weighted voting strategies with spatially varying weight distributions have been particularly successful. We show that, weighted voting based label fusion produces a spatial bias that under-segments structures with convex shapes. The bias can be approximated as applying spatial convolution to the ground truth spatial label probability maps, where the convolution kernel combines the distribution of residual registration errors and the function producing similarity-based voting weights. To reduce this bias, we apply a standard spatial deconvolution to the spatial probability maps obtained from weighted voting. In a brain image segmentation experiment, we demonstrate the spatial bias and show that our technique substantially reduces this spatial bias.</p>\",\"PeriodicalId\":89346,\"journal\":{\"name\":\"Conference on Computer Vision and Pattern Recognition Workshops. IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Workshops\",\"volume\":\"2012 \",\"pages\":\"909-916\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-06-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3589983/pdf/nihms-366474.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Conference on Computer Vision and Pattern Recognition Workshops. IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Workshops\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CVPR.2012.6247765\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Conference on Computer Vision and Pattern Recognition Workshops. IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Workshops","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.2012.6247765","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

多图集分割技术已广泛应用于医学图像分析。通过可变形配准,该技术实现了从预标记图集到未知图像的标记转移。当变形配准产生误差时,将多个图集产生的结果进行标签融合是减少分割误差的有效方法。在现有的标签融合策略中,具有空间变化权重分布的相似性加权投票策略尤为成功。我们的研究表明,基于加权投票的标签融合会产生空间偏差,导致对凸形结构的分割不足。这种偏差可以近似地理解为对地面真实空间标签概率图进行空间卷积,其中卷积核结合了残余注册误差分布和产生基于相似性的投票权重的函数。为了减少这种偏差,我们对加权投票得到的空间概率图进行了标准的空间解卷积。在大脑图像分割实验中,我们展示了空间偏差,并表明我们的技术大大减少了这种空间偏差。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Spatial Bias in Multi-Atlas Based Segmentation.

Multi-atlas segmentation has been widely applied in medical image analysis. With deformable registration, this technique realizes label transfer from pre-labeled atlases to unknown images. When deformable registration produces error, label fusion that combines results produced by multiple atlases is an effective way for reducing segmentation errors. Among the existing label fusion strategies, similarity-weighted voting strategies with spatially varying weight distributions have been particularly successful. We show that, weighted voting based label fusion produces a spatial bias that under-segments structures with convex shapes. The bias can be approximated as applying spatial convolution to the ground truth spatial label probability maps, where the convolution kernel combines the distribution of residual registration errors and the function producing similarity-based voting weights. To reduce this bias, we apply a standard spatial deconvolution to the spatial probability maps obtained from weighted voting. In a brain image segmentation experiment, we demonstrate the spatial bias and show that our technique substantially reduces this spatial bias.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信