药物基因组学基因优先排序的迭代搜索和排序算法。

Q4 Pharmacology, Toxicology and Pharmaceutics
Rong Xu, Quanqiu Wang
{"title":"药物基因组学基因优先排序的迭代搜索和排序算法。","authors":"Rong Xu, Quanqiu Wang","doi":"10.1504/IJCBDD.2013.052199","DOIUrl":null,"url":null,"abstract":"<p><p>Pharmacogenomics (PGx) studies are to identify genetic variants that may affect drug efficacy and toxicity. A machine understandable drug-gene relationship knowledge is important for many computational PGx studies and for personalised medicine. A comprehensive and accurate PGx-specific gene lexicon is important for automatic drug-gene relationship extraction from the scientific literature, rich knowledge source for PGx studies. In this study, we present a bootstrapping learning technique to rank 33,310 human genes with respect to their relevance to drug response. The algorithm uses only one seed PGx gene to iteratively extract and rank co-occurred genes using 20 million MEDLINE abstracts. Our ranking method is able to accurately rank PGx-specific genes highly among all human genes. Compared to randomly ranked genes (precision: 0.032, recall: 0.013, F1: 0.018), the algorithm has achieved significantly better performance (precision: 0.861, recall: 0.548, F1: 0.662) in ranking the top 2.5% of genes.</p>","PeriodicalId":39227,"journal":{"name":"International Journal of Computational Biology and Drug Design","volume":" ","pages":"18-31"},"PeriodicalIF":0.0000,"publicationDate":"2013-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6100784/pdf/nihms-984977.pdf","citationCount":"0","resultStr":"{\"title\":\"An iterative searching and ranking algorithm for prioritising pharmacogenomics genes.\",\"authors\":\"Rong Xu, Quanqiu Wang\",\"doi\":\"10.1504/IJCBDD.2013.052199\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Pharmacogenomics (PGx) studies are to identify genetic variants that may affect drug efficacy and toxicity. A machine understandable drug-gene relationship knowledge is important for many computational PGx studies and for personalised medicine. A comprehensive and accurate PGx-specific gene lexicon is important for automatic drug-gene relationship extraction from the scientific literature, rich knowledge source for PGx studies. In this study, we present a bootstrapping learning technique to rank 33,310 human genes with respect to their relevance to drug response. The algorithm uses only one seed PGx gene to iteratively extract and rank co-occurred genes using 20 million MEDLINE abstracts. Our ranking method is able to accurately rank PGx-specific genes highly among all human genes. Compared to randomly ranked genes (precision: 0.032, recall: 0.013, F1: 0.018), the algorithm has achieved significantly better performance (precision: 0.861, recall: 0.548, F1: 0.662) in ranking the top 2.5% of genes.</p>\",\"PeriodicalId\":39227,\"journal\":{\"name\":\"International Journal of Computational Biology and Drug Design\",\"volume\":\" \",\"pages\":\"18-31\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6100784/pdf/nihms-984977.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Computational Biology and Drug Design\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1504/IJCBDD.2013.052199\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2013/2/21 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"Pharmacology, Toxicology and Pharmaceutics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computational Biology and Drug Design","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJCBDD.2013.052199","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2013/2/21 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"Pharmacology, Toxicology and Pharmaceutics","Score":null,"Total":0}
引用次数: 0

摘要

药物基因组学(PGx)研究旨在确定可能影响药物疗效和毒性的基因变异。机器可理解的药物基因关系知识对于许多计算 PGx 研究和个性化医疗非常重要。科学文献是 PGx 研究的丰富知识来源,而全面准确的 PGx 特定基因词典对于从科学文献中自动提取药物基因关系非常重要。在本研究中,我们提出了一种引导学习技术,根据 33,310 个人类基因与药物反应的相关性对其进行排序。该算法仅使用一个种子 PGx 基因,利用 2,000 万份 MEDLINE 摘要迭代提取共同出现的基因并对其进行排序。我们的排序方法能够在所有人类基因中准确地将 PGx 特异性基因排序到较高的位置。与随机排序的基因相比(精确度:0.032,召回率:0.013,F1:0.018),该算法在对前 2.5%的基因进行排序时取得了明显更好的性能(精确度:0.861,召回率:0.548,F1:0.662)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An iterative searching and ranking algorithm for prioritising pharmacogenomics genes.

Pharmacogenomics (PGx) studies are to identify genetic variants that may affect drug efficacy and toxicity. A machine understandable drug-gene relationship knowledge is important for many computational PGx studies and for personalised medicine. A comprehensive and accurate PGx-specific gene lexicon is important for automatic drug-gene relationship extraction from the scientific literature, rich knowledge source for PGx studies. In this study, we present a bootstrapping learning technique to rank 33,310 human genes with respect to their relevance to drug response. The algorithm uses only one seed PGx gene to iteratively extract and rank co-occurred genes using 20 million MEDLINE abstracts. Our ranking method is able to accurately rank PGx-specific genes highly among all human genes. Compared to randomly ranked genes (precision: 0.032, recall: 0.013, F1: 0.018), the algorithm has achieved significantly better performance (precision: 0.861, recall: 0.548, F1: 0.662) in ranking the top 2.5% of genes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Computational Biology and Drug Design
International Journal of Computational Biology and Drug Design Pharmacology, Toxicology and Pharmaceutics-Drug Discovery
CiteScore
1.00
自引率
0.00%
发文量
8
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信