{"title":"利用适配体发现癌症生物标记物。","authors":"Yun Min Chang, Michael J Donovan, Weihong Tan","doi":"10.1155/2013/817350","DOIUrl":null,"url":null,"abstract":"<p><p>Aptamers are single-stranded synthetic DNA- or RNA-based oligonucleotides that fold into various shapes to bind to a specific target, which includes proteins, metals, and molecules. Aptamers have high affinity and high specificity that are comparable to that of antibodies. They are obtained using iterative method, called (Systematic Evolution of Ligands by Exponential Enrichment) SELEX and cell-based SELEX (cell-SELEX). Aptamers can be paired with recent advances in nanotechnology, microarray, microfluidics, and other technologies for applications in clinical medicine. One particular area that aptamers can shed a light on is biomarker discovery. Biomarkers are important in diagnosis and treatment of cancer. In this paper, we will describe ways in which aptamers can be used to discover biomarkers for cancer diagnosis and therapeutics.</p>","PeriodicalId":16575,"journal":{"name":"Journal of Nucleic Acids","volume":"2013 ","pages":"817350"},"PeriodicalIF":1.3000,"publicationDate":"2013-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3562578/pdf/","citationCount":"0","resultStr":"{\"title\":\"Using aptamers for cancer biomarker discovery.\",\"authors\":\"Yun Min Chang, Michael J Donovan, Weihong Tan\",\"doi\":\"10.1155/2013/817350\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Aptamers are single-stranded synthetic DNA- or RNA-based oligonucleotides that fold into various shapes to bind to a specific target, which includes proteins, metals, and molecules. Aptamers have high affinity and high specificity that are comparable to that of antibodies. They are obtained using iterative method, called (Systematic Evolution of Ligands by Exponential Enrichment) SELEX and cell-based SELEX (cell-SELEX). Aptamers can be paired with recent advances in nanotechnology, microarray, microfluidics, and other technologies for applications in clinical medicine. One particular area that aptamers can shed a light on is biomarker discovery. Biomarkers are important in diagnosis and treatment of cancer. In this paper, we will describe ways in which aptamers can be used to discover biomarkers for cancer diagnosis and therapeutics.</p>\",\"PeriodicalId\":16575,\"journal\":{\"name\":\"Journal of Nucleic Acids\",\"volume\":\"2013 \",\"pages\":\"817350\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2013-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3562578/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Nucleic Acids\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2013/817350\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2013/1/15 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nucleic Acids","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2013/817350","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2013/1/15 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
摘要
七聚体是以 DNA 或 RNA 为基础的单链合成寡核苷酸,可折叠成各种形状,与特定目标(包括蛋白质、金属和分子)结合。Aptamers 具有与抗体相媲美的高亲和力和高特异性。它们是通过迭代法(即配体指数富集系统进化法)SELEX 和基于细胞的 SELEX(细胞-SELEX)获得的。适配体可以与纳米技术、微阵列、微流控和其他技术的最新进展相结合,应用于临床医学。生物标记物的发现是适配体可以发挥作用的一个特殊领域。生物标记物对癌症的诊断和治疗非常重要。在本文中,我们将介绍如何利用适配体来发现用于癌症诊断和治疗的生物标记物。
Aptamers are single-stranded synthetic DNA- or RNA-based oligonucleotides that fold into various shapes to bind to a specific target, which includes proteins, metals, and molecules. Aptamers have high affinity and high specificity that are comparable to that of antibodies. They are obtained using iterative method, called (Systematic Evolution of Ligands by Exponential Enrichment) SELEX and cell-based SELEX (cell-SELEX). Aptamers can be paired with recent advances in nanotechnology, microarray, microfluidics, and other technologies for applications in clinical medicine. One particular area that aptamers can shed a light on is biomarker discovery. Biomarkers are important in diagnosis and treatment of cancer. In this paper, we will describe ways in which aptamers can be used to discover biomarkers for cancer diagnosis and therapeutics.