Seung-Jae Lim, Sang-Min Kim, Byung-Ho Lim, Young-Wan Moon, Youn-Soo Park
{"title":"全髋关节置换术中短干骺端植入的手工研磨与机器人铣削的比较:一项尸体研究。","authors":"Seung-Jae Lim, Sang-Min Kim, Byung-Ho Lim, Young-Wan Moon, Youn-Soo Park","doi":"10.3109/10929088.2012.744430","DOIUrl":null,"url":null,"abstract":"Objective: The ROBODOC system offers the theoretical advantage of providing better fit and mechanical stability of the stem in total hip arthroplasty. However, there has been no previous study on short metaphyseal-fitting stem implantation using the ROBODOC system. The aim of the present study was to compare the implant position and primary stability of short metaphyseal-fitting stems implanted by robotic milling and manual rasping in a human cadaveric femoral model. Methods: Eight matched pairs of human cadaveric femora were randomly assigned to a robotic milling group or manual rasping group. Operative time and intraoperative femoral fractures were monitored, and radiographic evaluation of stem alignment was performed by comparison of preoperative planning and postoperative CT data. Stability testing was performed on six matched pairs of femora, excluding two specimens in which intraoperative fractures occurred. Results: The robotic milling procedures took an average of 27 minutes longer than the manual rasping procedures (p < 0.001). The robotic milling group exhibited significantly better anteroposterior alignment and vertical seating, and also showed a significantly reduced variability in both alignment and vertical seating. No intraoperative femoral fracture was detected in the robotic milling group, whereas two femoral fractures and one femoral stem tip perforation were detected in the manual rasping group. Stability testing showed no significant difference in translational and rotational migrations between the two groups, although the robotic milling group showed a trend towards reduced variability of stability. Conclusions: Our cadaveric study suggests that the use of the ROBODOC system for short metaphyseal-fitting stem implantation may have advantages in improving implant fit and reducing the risk of intraoperative femoral fractures without compromising primary stability.","PeriodicalId":50644,"journal":{"name":"Computer Aided Surgery","volume":"18 1-2","pages":"33-40"},"PeriodicalIF":0.0000,"publicationDate":"2013-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.3109/10929088.2012.744430","citationCount":"17","resultStr":"{\"title\":\"Comparison of manual rasping and robotic milling for short metaphyseal-fitting stem implantation in total hip arthroplasty: a cadaveric study.\",\"authors\":\"Seung-Jae Lim, Sang-Min Kim, Byung-Ho Lim, Young-Wan Moon, Youn-Soo Park\",\"doi\":\"10.3109/10929088.2012.744430\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Objective: The ROBODOC system offers the theoretical advantage of providing better fit and mechanical stability of the stem in total hip arthroplasty. However, there has been no previous study on short metaphyseal-fitting stem implantation using the ROBODOC system. The aim of the present study was to compare the implant position and primary stability of short metaphyseal-fitting stems implanted by robotic milling and manual rasping in a human cadaveric femoral model. Methods: Eight matched pairs of human cadaveric femora were randomly assigned to a robotic milling group or manual rasping group. Operative time and intraoperative femoral fractures were monitored, and radiographic evaluation of stem alignment was performed by comparison of preoperative planning and postoperative CT data. Stability testing was performed on six matched pairs of femora, excluding two specimens in which intraoperative fractures occurred. Results: The robotic milling procedures took an average of 27 minutes longer than the manual rasping procedures (p < 0.001). The robotic milling group exhibited significantly better anteroposterior alignment and vertical seating, and also showed a significantly reduced variability in both alignment and vertical seating. No intraoperative femoral fracture was detected in the robotic milling group, whereas two femoral fractures and one femoral stem tip perforation were detected in the manual rasping group. Stability testing showed no significant difference in translational and rotational migrations between the two groups, although the robotic milling group showed a trend towards reduced variability of stability. Conclusions: Our cadaveric study suggests that the use of the ROBODOC system for short metaphyseal-fitting stem implantation may have advantages in improving implant fit and reducing the risk of intraoperative femoral fractures without compromising primary stability.\",\"PeriodicalId\":50644,\"journal\":{\"name\":\"Computer Aided Surgery\",\"volume\":\"18 1-2\",\"pages\":\"33-40\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.3109/10929088.2012.744430\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Aided Surgery\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3109/10929088.2012.744430\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2012/12/20 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Aided Surgery","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3109/10929088.2012.744430","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2012/12/20 0:00:00","PubModel":"Epub","JCR":"Q","JCRName":"Medicine","Score":null,"Total":0}
Comparison of manual rasping and robotic milling for short metaphyseal-fitting stem implantation in total hip arthroplasty: a cadaveric study.
Objective: The ROBODOC system offers the theoretical advantage of providing better fit and mechanical stability of the stem in total hip arthroplasty. However, there has been no previous study on short metaphyseal-fitting stem implantation using the ROBODOC system. The aim of the present study was to compare the implant position and primary stability of short metaphyseal-fitting stems implanted by robotic milling and manual rasping in a human cadaveric femoral model. Methods: Eight matched pairs of human cadaveric femora were randomly assigned to a robotic milling group or manual rasping group. Operative time and intraoperative femoral fractures were monitored, and radiographic evaluation of stem alignment was performed by comparison of preoperative planning and postoperative CT data. Stability testing was performed on six matched pairs of femora, excluding two specimens in which intraoperative fractures occurred. Results: The robotic milling procedures took an average of 27 minutes longer than the manual rasping procedures (p < 0.001). The robotic milling group exhibited significantly better anteroposterior alignment and vertical seating, and also showed a significantly reduced variability in both alignment and vertical seating. No intraoperative femoral fracture was detected in the robotic milling group, whereas two femoral fractures and one femoral stem tip perforation were detected in the manual rasping group. Stability testing showed no significant difference in translational and rotational migrations between the two groups, although the robotic milling group showed a trend towards reduced variability of stability. Conclusions: Our cadaveric study suggests that the use of the ROBODOC system for short metaphyseal-fitting stem implantation may have advantages in improving implant fit and reducing the risk of intraoperative femoral fractures without compromising primary stability.
期刊介绍:
The scope of Computer Aided Surgery encompasses all fields within surgery, as well as biomedical imaging and instrumentation, and digital technology employed as an adjunct to imaging in diagnosis, therapeutics, and surgery. Topics featured include frameless as well as conventional stereotaxic procedures, surgery guided by ultrasound, image guided focal irradiation, robotic surgery, and other therapeutic interventions that are performed with the use of digital imaging technology.