新型双(6-羧基吡啶-2-羧基-κ3O2,N,O6)三水合镍(II) Ni(Hpydc)2·3H2O的水热合成与晶体结构

IF 1.9 3区 化学
Sumit Sanotra, Rimpy Gupta, Haq Nawaz Sheikh, Bansi Lal Kalsotra, Vivek K Gupta, Rajnikant
{"title":"新型双(6-羧基吡啶-2-羧基-κ3O2,N,O6)三水合镍(II) Ni(Hpydc)2·3H2O的水热合成与晶体结构","authors":"Sumit Sanotra,&nbsp;Rimpy Gupta,&nbsp;Haq Nawaz Sheikh,&nbsp;Bansi Lal Kalsotra,&nbsp;Vivek K Gupta,&nbsp;Rajnikant","doi":"10.1107/S0108768112043972","DOIUrl":null,"url":null,"abstract":"<p><p>The synthesis and crystal structure of the compound bis(6-carboxypyridine-2-carboxylato-κ(3)O(2),N,O(6))nickel(II) trihydrate, Ni(Hpydc)(2)·3H(2)O, with a supramolecular network is reported (H(2)pydc is pyridine-2,6-dicarboxylic acid). The compound has been prepared by hydrothermal methods. The crystal structure has been solved by direct methods using single-crystal X-ray diffraction data collected at 293 K and refined by full-matrix least-squares procedures to a final R value of 0.0323 for 2779 observed reflections. The compound has distorted octahedral geometry around the metal centre. The complex contains two identical singly ionized ligand molecules. The nickel(II) is bonded to four O atoms and two N atoms from the tridentate ligand molecules, which are nearly perpendicular to each other. Hydrogen-bonded interactions create a three-dimensional supramolecular porous network. The supramolecular structure accounts for the porous structure of the compound as is evident from the Brunauer, Emmett & Teller (BET) surface area of 80 m(2) g(-1). Thermal degradation of the compound shows that lattice water molecules give stability to the crystal structure.</p>","PeriodicalId":7107,"journal":{"name":"Acta Crystallographica Section B-structural Science","volume":"68 Pt 6","pages":"619-24"},"PeriodicalIF":1.9000,"publicationDate":"2012-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1107/S0108768112043972","citationCount":"2","resultStr":"{\"title\":\"Hydrothermal synthesis and crystal structure of novel bis(6-carboxypyridine-2-carboxylato-κ3O2,N,O6)nickel(II) trihydrate, Ni(Hpydc)2·3H2O.\",\"authors\":\"Sumit Sanotra,&nbsp;Rimpy Gupta,&nbsp;Haq Nawaz Sheikh,&nbsp;Bansi Lal Kalsotra,&nbsp;Vivek K Gupta,&nbsp;Rajnikant\",\"doi\":\"10.1107/S0108768112043972\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The synthesis and crystal structure of the compound bis(6-carboxypyridine-2-carboxylato-κ(3)O(2),N,O(6))nickel(II) trihydrate, Ni(Hpydc)(2)·3H(2)O, with a supramolecular network is reported (H(2)pydc is pyridine-2,6-dicarboxylic acid). The compound has been prepared by hydrothermal methods. The crystal structure has been solved by direct methods using single-crystal X-ray diffraction data collected at 293 K and refined by full-matrix least-squares procedures to a final R value of 0.0323 for 2779 observed reflections. The compound has distorted octahedral geometry around the metal centre. The complex contains two identical singly ionized ligand molecules. The nickel(II) is bonded to four O atoms and two N atoms from the tridentate ligand molecules, which are nearly perpendicular to each other. Hydrogen-bonded interactions create a three-dimensional supramolecular porous network. The supramolecular structure accounts for the porous structure of the compound as is evident from the Brunauer, Emmett & Teller (BET) surface area of 80 m(2) g(-1). Thermal degradation of the compound shows that lattice water molecules give stability to the crystal structure.</p>\",\"PeriodicalId\":7107,\"journal\":{\"name\":\"Acta Crystallographica Section B-structural Science\",\"volume\":\"68 Pt 6\",\"pages\":\"619-24\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2012-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1107/S0108768112043972\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Crystallographica Section B-structural Science\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1107/S0108768112043972\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2012/11/16 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Crystallographica Section B-structural Science","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1107/S0108768112043972","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2012/11/16 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

报道了具有超分子网络的化合物(6-羧基吡啶-2-羧基-κ(3)O(2),N,O(6))镍(II)三水合物Ni(Hpydc)(2)·3H(2)O的合成和晶体结构(H(2)pydc为吡啶-2,6-二羧酸)。该化合物是用水热法制备的。利用293k下采集的单晶x射线衍射数据,用全矩阵最小二乘法对2779次反射的最终R值进行了精化,得到了0.0323的晶体结构。该化合物在金属中心周围具有扭曲的八面体几何形状。该配合物包含两个相同的单电离配体分子。镍(II)与来自三叉戟配体分子的四个O原子和两个N原子结合,它们几乎彼此垂直。氢键相互作用创造了一个三维超分子多孔网络。从Brunauer, Emmett & Teller (BET)的80 m(2) g(-1)的表面积可以明显看出,超分子结构解释了化合物的多孔结构。化合物的热降解表明,晶格水分子使晶体结构稳定。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hydrothermal synthesis and crystal structure of novel bis(6-carboxypyridine-2-carboxylato-κ3O2,N,O6)nickel(II) trihydrate, Ni(Hpydc)2·3H2O.

The synthesis and crystal structure of the compound bis(6-carboxypyridine-2-carboxylato-κ(3)O(2),N,O(6))nickel(II) trihydrate, Ni(Hpydc)(2)·3H(2)O, with a supramolecular network is reported (H(2)pydc is pyridine-2,6-dicarboxylic acid). The compound has been prepared by hydrothermal methods. The crystal structure has been solved by direct methods using single-crystal X-ray diffraction data collected at 293 K and refined by full-matrix least-squares procedures to a final R value of 0.0323 for 2779 observed reflections. The compound has distorted octahedral geometry around the metal centre. The complex contains two identical singly ionized ligand molecules. The nickel(II) is bonded to four O atoms and two N atoms from the tridentate ligand molecules, which are nearly perpendicular to each other. Hydrogen-bonded interactions create a three-dimensional supramolecular porous network. The supramolecular structure accounts for the porous structure of the compound as is evident from the Brunauer, Emmett & Teller (BET) surface area of 80 m(2) g(-1). Thermal degradation of the compound shows that lattice water molecules give stability to the crystal structure.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
5.30%
发文量
0
审稿时长
6-12 weeks
期刊介绍: Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials publishes scientific articles related to the structural science of compounds and materials in the widest sense. Knowledge of the arrangements of atoms, including their temporal variations and dependencies on temperature and pressure, is often the key to understanding physical and chemical phenomena and is crucial for the design of new materials and supramolecular devices. Acta Crystallographica B is the forum for the publication of such contributions. Scientific developments based on experimental studies as well as those based on theoretical approaches, including crystal-structure prediction, structure-property relations and the use of databases of crystal structures, are published.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信