Nikolaus Goessweiner-Mohr, Christian Fercher, Mohammad Yaser Abajy, Elisabeth Grohmann, Walter Keller
{"title":"革兰氏阳性结合质粒pIP501推定转移蛋白TraN的结晶和首次数据收集。","authors":"Nikolaus Goessweiner-Mohr, Christian Fercher, Mohammad Yaser Abajy, Elisabeth Grohmann, Walter Keller","doi":"10.1107/S174430911204184X","DOIUrl":null,"url":null,"abstract":"<p><p>Conjugative plasmid transfer is the most important route for the spread of resistance and virulence genes among bacteria. Consequently, bacteria carrying conjugative plasmids are a substantial threat to human health, especially hospitalized patients. Whilst detailed information about the process has been obtained for Gram-negative type-4 secretion systems, little is known about the corresponding mechanisms in Gram-positive (G+) bacteria. The successful purification and crystallization of the putative transfer protein TraN from the G+ conjugative model plasmid pIP501 of Enterococcus faecalis are presented. Native crystals diffracted to 1.8 Å resolution on a synchrotron beamline. The crystals belonged to space group P2(1), with unit-cell parameters a=32.88, b=54.94, c=57.71 Å, β=91.89° and two molecules per asymmetric unit.</p>","PeriodicalId":7310,"journal":{"name":"Acta Crystallographica Section F-structural Biology and Crystallization Communications","volume":"68 Pt 11","pages":"1402-5"},"PeriodicalIF":0.9000,"publicationDate":"2012-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1107/S174430911204184X","citationCount":"5","resultStr":"{\"title\":\"Crystallization and first data collection of the putative transfer protein TraN from the Gram-positive conjugative plasmid pIP501.\",\"authors\":\"Nikolaus Goessweiner-Mohr, Christian Fercher, Mohammad Yaser Abajy, Elisabeth Grohmann, Walter Keller\",\"doi\":\"10.1107/S174430911204184X\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Conjugative plasmid transfer is the most important route for the spread of resistance and virulence genes among bacteria. Consequently, bacteria carrying conjugative plasmids are a substantial threat to human health, especially hospitalized patients. Whilst detailed information about the process has been obtained for Gram-negative type-4 secretion systems, little is known about the corresponding mechanisms in Gram-positive (G+) bacteria. The successful purification and crystallization of the putative transfer protein TraN from the G+ conjugative model plasmid pIP501 of Enterococcus faecalis are presented. Native crystals diffracted to 1.8 Å resolution on a synchrotron beamline. The crystals belonged to space group P2(1), with unit-cell parameters a=32.88, b=54.94, c=57.71 Å, β=91.89° and two molecules per asymmetric unit.</p>\",\"PeriodicalId\":7310,\"journal\":{\"name\":\"Acta Crystallographica Section F-structural Biology and Crystallization Communications\",\"volume\":\"68 Pt 11\",\"pages\":\"1402-5\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2012-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1107/S174430911204184X\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Crystallographica Section F-structural Biology and Crystallization Communications\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1107/S174430911204184X\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2012/10/30 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Crystallographica Section F-structural Biology and Crystallization Communications","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1107/S174430911204184X","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2012/10/30 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
Crystallization and first data collection of the putative transfer protein TraN from the Gram-positive conjugative plasmid pIP501.
Conjugative plasmid transfer is the most important route for the spread of resistance and virulence genes among bacteria. Consequently, bacteria carrying conjugative plasmids are a substantial threat to human health, especially hospitalized patients. Whilst detailed information about the process has been obtained for Gram-negative type-4 secretion systems, little is known about the corresponding mechanisms in Gram-positive (G+) bacteria. The successful purification and crystallization of the putative transfer protein TraN from the G+ conjugative model plasmid pIP501 of Enterococcus faecalis are presented. Native crystals diffracted to 1.8 Å resolution on a synchrotron beamline. The crystals belonged to space group P2(1), with unit-cell parameters a=32.88, b=54.94, c=57.71 Å, β=91.89° and two molecules per asymmetric unit.
期刊介绍:
Acta Crystallographica Section F is a rapid structural biology communications journal.
Articles on any aspect of structural biology, including structures determined using high-throughput methods or from iterative studies such as those used in the pharmaceutical industry, are welcomed by the journal.
The journal offers the option of open access, and all communications benefit from unlimited free use of colour illustrations and no page charges. Authors are encouraged to submit multimedia content for publication with their articles.
Acta Cryst. F has a dedicated online tool called publBio that is designed to make the preparation and submission of articles easier for authors.