Anindya Roy, Neil J Perkins, Germaine M Buck Louis
{"title":"评估化学混合物与人类健康:使用贝叶斯信念网分析法。","authors":"Anindya Roy, Neil J Perkins, Germaine M Buck Louis","doi":"10.4236/jep.2012.36056","DOIUrl":null,"url":null,"abstract":"<p><p>BACKGROUND: Despite humans being exposed to complex chemical mixtures, much of the available research continues to focus on a single compound or metabolite or a select subgroup of compounds inconsistent with the nature of human exposure. Uncertainty regarding how best to model chemical mixtures coupled with few analytic approaches remains a formidable challenge and served as the impetus for study. OBJECTIVES: To identify the polychlorinated biphenyl (PCB) congener(s) within a chemical mixture that was most associated with an endometriosis diagnosis using novel graphical modeling techniques. METHODS: Bayesian Belief Network (BBN) models were developed and empirically assessed in a cohort comprising 84 women aged 18-40 years who underwent a laparoscopy or laparotomy between 1999 and 2000; 79 (94%) women had serum concentrations for 68 PCB congeners quantified. Adjusted odds ratios (AOR) for endometriosis were estimated for individual PCB congeners using BBN models. RESULTS: PCB congeners #114 (AOR = 3.01; 95% CI = 2.25, 3.77) and #136 (AOR = 1.79; 95% CI = 1.03, 2.55) were associated with an endometriosis diagnosis. Combinations of mixtures inclusive of PCB #114 were all associated with higher odds of endometriosis, underscoring its potential relation with endometriosis. CONCLUSIONS: BBN models identified PCB congener 114 as the most influential congener for the odds of an endometriosis diagnosis in the context of a 68 congener chemical mixture. BBN models offer investigators the opportunity to assess which compounds within a mixture may drive a human health effect.</p>","PeriodicalId":15775,"journal":{"name":"Journal of Environmental Protection","volume":"3 6","pages":"462-468"},"PeriodicalIF":0.0000,"publicationDate":"2012-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3484983/pdf/nihms375839.pdf","citationCount":"0","resultStr":"{\"title\":\"Assessing Chemical Mixtures and Human Health: Use of Bayesian Belief Net Analysis.\",\"authors\":\"Anindya Roy, Neil J Perkins, Germaine M Buck Louis\",\"doi\":\"10.4236/jep.2012.36056\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>BACKGROUND: Despite humans being exposed to complex chemical mixtures, much of the available research continues to focus on a single compound or metabolite or a select subgroup of compounds inconsistent with the nature of human exposure. Uncertainty regarding how best to model chemical mixtures coupled with few analytic approaches remains a formidable challenge and served as the impetus for study. OBJECTIVES: To identify the polychlorinated biphenyl (PCB) congener(s) within a chemical mixture that was most associated with an endometriosis diagnosis using novel graphical modeling techniques. METHODS: Bayesian Belief Network (BBN) models were developed and empirically assessed in a cohort comprising 84 women aged 18-40 years who underwent a laparoscopy or laparotomy between 1999 and 2000; 79 (94%) women had serum concentrations for 68 PCB congeners quantified. Adjusted odds ratios (AOR) for endometriosis were estimated for individual PCB congeners using BBN models. RESULTS: PCB congeners #114 (AOR = 3.01; 95% CI = 2.25, 3.77) and #136 (AOR = 1.79; 95% CI = 1.03, 2.55) were associated with an endometriosis diagnosis. Combinations of mixtures inclusive of PCB #114 were all associated with higher odds of endometriosis, underscoring its potential relation with endometriosis. CONCLUSIONS: BBN models identified PCB congener 114 as the most influential congener for the odds of an endometriosis diagnosis in the context of a 68 congener chemical mixture. BBN models offer investigators the opportunity to assess which compounds within a mixture may drive a human health effect.</p>\",\"PeriodicalId\":15775,\"journal\":{\"name\":\"Journal of Environmental Protection\",\"volume\":\"3 6\",\"pages\":\"462-468\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3484983/pdf/nihms375839.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Environmental Protection\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4236/jep.2012.36056\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2012/6/11 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Environmental Protection","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4236/jep.2012.36056","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2012/6/11 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
Assessing Chemical Mixtures and Human Health: Use of Bayesian Belief Net Analysis.
BACKGROUND: Despite humans being exposed to complex chemical mixtures, much of the available research continues to focus on a single compound or metabolite or a select subgroup of compounds inconsistent with the nature of human exposure. Uncertainty regarding how best to model chemical mixtures coupled with few analytic approaches remains a formidable challenge and served as the impetus for study. OBJECTIVES: To identify the polychlorinated biphenyl (PCB) congener(s) within a chemical mixture that was most associated with an endometriosis diagnosis using novel graphical modeling techniques. METHODS: Bayesian Belief Network (BBN) models were developed and empirically assessed in a cohort comprising 84 women aged 18-40 years who underwent a laparoscopy or laparotomy between 1999 and 2000; 79 (94%) women had serum concentrations for 68 PCB congeners quantified. Adjusted odds ratios (AOR) for endometriosis were estimated for individual PCB congeners using BBN models. RESULTS: PCB congeners #114 (AOR = 3.01; 95% CI = 2.25, 3.77) and #136 (AOR = 1.79; 95% CI = 1.03, 2.55) were associated with an endometriosis diagnosis. Combinations of mixtures inclusive of PCB #114 were all associated with higher odds of endometriosis, underscoring its potential relation with endometriosis. CONCLUSIONS: BBN models identified PCB congener 114 as the most influential congener for the odds of an endometriosis diagnosis in the context of a 68 congener chemical mixture. BBN models offer investigators the opportunity to assess which compounds within a mixture may drive a human health effect.