线粒体载体的底物特异性:重新审视突变。

Q3 Biochemistry, Genetics and Molecular Biology
Molecular Membrane Biology Pub Date : 2013-03-01 Epub Date: 2012-11-05 DOI:10.3109/09687688.2012.737936
Magnus Monné, Ferdinando Palmieri, Edmund R S Kunji
{"title":"线粒体载体的底物特异性:重新审视突变。","authors":"Magnus Monné,&nbsp;Ferdinando Palmieri,&nbsp;Edmund R S Kunji","doi":"10.3109/09687688.2012.737936","DOIUrl":null,"url":null,"abstract":"<p><p>Mitochondrial carriers transport inorganic ions, nucleotides, amino acids, keto acids and cofactors across the mitochondrial inner membrane. Structurally they consist of three domains, each containing two transmembrane α-helices linked by a short α-helix and loop. The substrate binds to three major contact points in the central cavity. The class of substrate (e.g., adenine nucleotides) is determined by contact point II on transmembrane α-helix H4 and the type of substrate within the class (e.g., ADP, coenzyme A) by contact point I in H2, whereas contact point III on H6 is most usually a positively charged residue, irrespective of the type or class. Two salt bridge networks, consisting of conserved and symmetric residues, are located on the matrix and cytoplasmic side of the cavity. These residues are part of the gates that are involved in opening and closing of the carrier during the transport cycle, exposing the central substrate binding site to either side of the membrane in an alternating way. Here we revisit the plethora of mutagenesis data that have been collected over the last two decades to see if the residues in the proposed binding site and salt bridge networks are indeed important for function. The analysis shows that the major contact points of the substrate binding site are indeed crucial for function and in defining the specificity. The matrix salt bridge network is more critical for function than the cytoplasmic salt bridge network in agreement with its central position, but neither is likely to be involved in substrate recognition directly.</p>","PeriodicalId":18858,"journal":{"name":"Molecular Membrane Biology","volume":"30 2","pages":"149-59"},"PeriodicalIF":0.0000,"publicationDate":"2013-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.3109/09687688.2012.737936","citationCount":"20","resultStr":"{\"title\":\"The substrate specificity of mitochondrial carriers: mutagenesis revisited.\",\"authors\":\"Magnus Monné,&nbsp;Ferdinando Palmieri,&nbsp;Edmund R S Kunji\",\"doi\":\"10.3109/09687688.2012.737936\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Mitochondrial carriers transport inorganic ions, nucleotides, amino acids, keto acids and cofactors across the mitochondrial inner membrane. Structurally they consist of three domains, each containing two transmembrane α-helices linked by a short α-helix and loop. The substrate binds to three major contact points in the central cavity. The class of substrate (e.g., adenine nucleotides) is determined by contact point II on transmembrane α-helix H4 and the type of substrate within the class (e.g., ADP, coenzyme A) by contact point I in H2, whereas contact point III on H6 is most usually a positively charged residue, irrespective of the type or class. Two salt bridge networks, consisting of conserved and symmetric residues, are located on the matrix and cytoplasmic side of the cavity. These residues are part of the gates that are involved in opening and closing of the carrier during the transport cycle, exposing the central substrate binding site to either side of the membrane in an alternating way. Here we revisit the plethora of mutagenesis data that have been collected over the last two decades to see if the residues in the proposed binding site and salt bridge networks are indeed important for function. The analysis shows that the major contact points of the substrate binding site are indeed crucial for function and in defining the specificity. The matrix salt bridge network is more critical for function than the cytoplasmic salt bridge network in agreement with its central position, but neither is likely to be involved in substrate recognition directly.</p>\",\"PeriodicalId\":18858,\"journal\":{\"name\":\"Molecular Membrane Biology\",\"volume\":\"30 2\",\"pages\":\"149-59\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.3109/09687688.2012.737936\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Membrane Biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3109/09687688.2012.737936\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2012/11/5 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Membrane Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3109/09687688.2012.737936","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2012/11/5 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 20

摘要

线粒体载体通过线粒体内膜运输无机离子、核苷酸、氨基酸、酮酸和辅因子。在结构上,它们由三个结构域组成,每个结构域包含两个跨膜α-螺旋,由短α-螺旋和环连接。基板与中心腔中的三个主要接触点结合。底物的类别(如腺嘌呤核苷酸)由跨膜α-螺旋H4上的接触点II决定,该类底物的类型(如ADP、辅酶A)由H2上的接触点I决定,而H6上的接触点III通常是带正电的残基,与类型或类别无关。两个由保守残基和对称残基组成的盐桥网络分别位于腔体的基质和细胞质侧。这些残基是通道的一部分,参与转运周期中载体的开启和关闭,以交替的方式将中心底物结合位点暴露在膜的两侧。在这里,我们回顾了过去二十年来收集的大量诱变数据,以确定所提出的结合位点和盐桥网络中的残基是否对功能确实重要。分析表明,底物结合位点的主要接触点确实对功能和特异性的定义至关重要。基质盐桥网络在功能上比细胞质盐桥网络更重要,这与它的中心位置一致,但两者都不太可能直接参与底物识别。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The substrate specificity of mitochondrial carriers: mutagenesis revisited.

Mitochondrial carriers transport inorganic ions, nucleotides, amino acids, keto acids and cofactors across the mitochondrial inner membrane. Structurally they consist of three domains, each containing two transmembrane α-helices linked by a short α-helix and loop. The substrate binds to three major contact points in the central cavity. The class of substrate (e.g., adenine nucleotides) is determined by contact point II on transmembrane α-helix H4 and the type of substrate within the class (e.g., ADP, coenzyme A) by contact point I in H2, whereas contact point III on H6 is most usually a positively charged residue, irrespective of the type or class. Two salt bridge networks, consisting of conserved and symmetric residues, are located on the matrix and cytoplasmic side of the cavity. These residues are part of the gates that are involved in opening and closing of the carrier during the transport cycle, exposing the central substrate binding site to either side of the membrane in an alternating way. Here we revisit the plethora of mutagenesis data that have been collected over the last two decades to see if the residues in the proposed binding site and salt bridge networks are indeed important for function. The analysis shows that the major contact points of the substrate binding site are indeed crucial for function and in defining the specificity. The matrix salt bridge network is more critical for function than the cytoplasmic salt bridge network in agreement with its central position, but neither is likely to be involved in substrate recognition directly.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Molecular Membrane Biology
Molecular Membrane Biology 生物-生化与分子生物学
CiteScore
4.80
自引率
0.00%
发文量
0
审稿时长
>12 weeks
期刊介绍: Cessation. Molecular Membrane Biology provides a forum for high quality research that serves to advance knowledge in molecular aspects of biological membrane structure and function. The journal welcomes submissions of original research papers and reviews in the following areas: • Membrane receptors and signalling • Membrane transporters, pores and channels • Synthesis and structure of membrane proteins • Membrane translocation and targeting • Lipid organisation and asymmetry • Model membranes • Membrane trafficking • Cytoskeletal and extracellular membrane interactions • Cell adhesion and intercellular interactions • Molecular dynamics and molecular modelling of membranes. • Antimicrobial peptides.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信