利用准似然和缩小的分散估计检测rna序列数据中的差异表达。

Pub Date : 2012-10-22 DOI:10.1515/1544-6115.1826
Steven P Lund, Dan Nettleton, Davis J McCarthy, Gordon K Smyth
{"title":"利用准似然和缩小的分散估计检测rna序列数据中的差异表达。","authors":"Steven P Lund,&nbsp;Dan Nettleton,&nbsp;Davis J McCarthy,&nbsp;Gordon K Smyth","doi":"10.1515/1544-6115.1826","DOIUrl":null,"url":null,"abstract":"<p><p>Next generation sequencing technology provides a powerful tool for measuring gene expression (mRNA) levels in the form of RNA-sequence data. Method development for identifying differentially expressed (DE) genes from RNA-seq data, which frequently includes many low-count integers and can exhibit severe overdispersion relative to Poisson or binomial distributions, is a popular area of ongoing research. Here we present quasi-likelihood methods with shrunken dispersion estimates based on an adaptation of Smyth's (2004) approach to estimating gene-specific error variances for microarray data. Our suggested methods are computationally simple, analogous to ANOVA and compare favorably versus competing methods in detecting DE genes and estimating false discovery rates across a variety of simulations based on real data.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2012-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/1544-6115.1826","citationCount":"280","resultStr":"{\"title\":\"Detecting differential expression in RNA-sequence data using quasi-likelihood with shrunken dispersion estimates.\",\"authors\":\"Steven P Lund,&nbsp;Dan Nettleton,&nbsp;Davis J McCarthy,&nbsp;Gordon K Smyth\",\"doi\":\"10.1515/1544-6115.1826\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Next generation sequencing technology provides a powerful tool for measuring gene expression (mRNA) levels in the form of RNA-sequence data. Method development for identifying differentially expressed (DE) genes from RNA-seq data, which frequently includes many low-count integers and can exhibit severe overdispersion relative to Poisson or binomial distributions, is a popular area of ongoing research. Here we present quasi-likelihood methods with shrunken dispersion estimates based on an adaptation of Smyth's (2004) approach to estimating gene-specific error variances for microarray data. Our suggested methods are computationally simple, analogous to ANOVA and compare favorably versus competing methods in detecting DE genes and estimating false discovery rates across a variety of simulations based on real data.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2012-10-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1515/1544-6115.1826\",\"citationCount\":\"280\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/1544-6115.1826\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/1544-6115.1826","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 280

摘要

下一代测序技术以rna序列数据的形式为测量基因表达(mRNA)水平提供了强大的工具。从RNA-seq数据中识别差异表达(DE)基因的方法开发是一个正在进行的热门研究领域,这些基因通常包括许多低计数整数,并且相对于泊松分布或二项分布可能表现出严重的过分散。在这里,我们提出了基于Smyth(2004)方法的准似然方法,缩小了分散估计,用于估计微阵列数据的基因特异性误差方差。我们建议的方法计算简单,类似于方差分析,并且在检测DE基因和估计基于真实数据的各种模拟的错误发现率方面优于竞争方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Detecting differential expression in RNA-sequence data using quasi-likelihood with shrunken dispersion estimates.

Next generation sequencing technology provides a powerful tool for measuring gene expression (mRNA) levels in the form of RNA-sequence data. Method development for identifying differentially expressed (DE) genes from RNA-seq data, which frequently includes many low-count integers and can exhibit severe overdispersion relative to Poisson or binomial distributions, is a popular area of ongoing research. Here we present quasi-likelihood methods with shrunken dispersion estimates based on an adaptation of Smyth's (2004) approach to estimating gene-specific error variances for microarray data. Our suggested methods are computationally simple, analogous to ANOVA and compare favorably versus competing methods in detecting DE genes and estimating false discovery rates across a variety of simulations based on real data.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信