{"title":"Tn5-OT182不应用于鉴定假伯克霍尔德菌生物膜形成相关基因。","authors":"Jirarat Songsri, Tanakorn Proungvitaya, Surasak Wongratanacheewin, Preecha Homchampa","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Burkholderia pseudomallei, a gram-negative bacterium, is the causative agent of melioidosis. One of the important virulence properties of this bacteria is its ability to form a biofilm. Genes involved in biofilm formation in B. pseudomallei have not been thoroughly studied. In this study, Tn5-OT182 mutagenesis was used to isolate of B. pseudomallei strain A2 mutants unable to produce biofilm. Ten biofilm-defective transposon mutants were isolated and analyzed. Flanking DNA from each transposon mutant were self-cloned and sequenced, then the sequences were analyzed with the BLAST program. To confirm these genes are involved in biofilm formation, we constructed three gene deletion mutants marked with a tetracycline resistance gene. The constructed tet(r)-marked deletion mutants were checked for correct structure and size by polymerase chain reaction. When subjected to biofilm assay, all tested tet(r)-marked deletion mutants were still able to produce biofilm, indicating the three genes are not involved in biofilm formation. These results suggest integration of Tn5-OT182 in genes not involved in biofilm production can render B. pseudomallei unable to produce biofilm by an unknown mechanism. This information demonstrates Tn5-OT182 is not a reliable tool for identifying genes involved in biofilm formation unless a confirmatory experiment is carried out in parallel.</p>","PeriodicalId":520816,"journal":{"name":"The Southeast Asian journal of tropical medicine and public health","volume":" ","pages":"124-8"},"PeriodicalIF":0.0000,"publicationDate":"2012-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tn5-OT182 should not be used to identify genes involved in biofilm formation in Burkholderia pseudomallei.\",\"authors\":\"Jirarat Songsri, Tanakorn Proungvitaya, Surasak Wongratanacheewin, Preecha Homchampa\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Burkholderia pseudomallei, a gram-negative bacterium, is the causative agent of melioidosis. One of the important virulence properties of this bacteria is its ability to form a biofilm. Genes involved in biofilm formation in B. pseudomallei have not been thoroughly studied. In this study, Tn5-OT182 mutagenesis was used to isolate of B. pseudomallei strain A2 mutants unable to produce biofilm. Ten biofilm-defective transposon mutants were isolated and analyzed. Flanking DNA from each transposon mutant were self-cloned and sequenced, then the sequences were analyzed with the BLAST program. To confirm these genes are involved in biofilm formation, we constructed three gene deletion mutants marked with a tetracycline resistance gene. The constructed tet(r)-marked deletion mutants were checked for correct structure and size by polymerase chain reaction. When subjected to biofilm assay, all tested tet(r)-marked deletion mutants were still able to produce biofilm, indicating the three genes are not involved in biofilm formation. These results suggest integration of Tn5-OT182 in genes not involved in biofilm production can render B. pseudomallei unable to produce biofilm by an unknown mechanism. This information demonstrates Tn5-OT182 is not a reliable tool for identifying genes involved in biofilm formation unless a confirmatory experiment is carried out in parallel.</p>\",\"PeriodicalId\":520816,\"journal\":{\"name\":\"The Southeast Asian journal of tropical medicine and public health\",\"volume\":\" \",\"pages\":\"124-8\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Southeast Asian journal of tropical medicine and public health\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Southeast Asian journal of tropical medicine and public health","FirstCategoryId":"3","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Tn5-OT182 should not be used to identify genes involved in biofilm formation in Burkholderia pseudomallei.
Burkholderia pseudomallei, a gram-negative bacterium, is the causative agent of melioidosis. One of the important virulence properties of this bacteria is its ability to form a biofilm. Genes involved in biofilm formation in B. pseudomallei have not been thoroughly studied. In this study, Tn5-OT182 mutagenesis was used to isolate of B. pseudomallei strain A2 mutants unable to produce biofilm. Ten biofilm-defective transposon mutants were isolated and analyzed. Flanking DNA from each transposon mutant were self-cloned and sequenced, then the sequences were analyzed with the BLAST program. To confirm these genes are involved in biofilm formation, we constructed three gene deletion mutants marked with a tetracycline resistance gene. The constructed tet(r)-marked deletion mutants were checked for correct structure and size by polymerase chain reaction. When subjected to biofilm assay, all tested tet(r)-marked deletion mutants were still able to produce biofilm, indicating the three genes are not involved in biofilm formation. These results suggest integration of Tn5-OT182 in genes not involved in biofilm production can render B. pseudomallei unable to produce biofilm by an unknown mechanism. This information demonstrates Tn5-OT182 is not a reliable tool for identifying genes involved in biofilm formation unless a confirmatory experiment is carried out in parallel.